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Abstract5

This paper offers a new mechanism in order to Nash-implement a Pareto optimal level
of ambient pollution. As usual in the literature on non point source pollution, the proposed
scheme is not conditional on individual emissions, since they are not observable; rather it
is conditional on aggregate emission. But the novelty here is that we do not assume the
regulator knows the agents' preferences, with which he could identify the target level of10

aggregate emission. Our mechanism dispenses with this information, yet it achieves Pareto
optimality provided that the number of agents involved in the problem is known.
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1 Introduction15

The ambient tax (Segerson, 1988, Hansen, 1998, Shortle and Horan, 2001 to quote a few)
is considered an ef�cient tool to implement a socially optimum level of emissions as a Nash
equilibrium when the regulator cannot observe individual emissions. To achieve a target level
of emissions with the ambient tax instrument the regulator only needs to know the level of
ambient pollution, i.e. the aggregation of all individual emissions. There are several variants of20

this instrument now, but its basic principle is as follows: each polluter is liable for the ambient
pollution in excess of the target, whether or not he is responsible for that outcome. That is, each
polluter is required to pay for the total damage to society due to excess pollution. If pollution
is below the target level, no tax is paid. The unique Nash equilibrium with the ambient tax
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instrument is such that aggregate emissions are equal to the target level de�ned by the regulator,25

so that at equilibrium none of the polluters is required to pay a tax for excess damage.
While the target can be set arbitrarily at any level by the regulator, the most interesting case

is where it corresponds to a social optimum. To identify such a target the regulator requires
additional information. Besides the ambient level of pollution the regulator also needs to know
the social damage function of the ambient pollution. Such knowledge is necessary in order30

to compute the optimum tax rate which corresponds to the level of emissions for which the
marginal social bene�t of the ambient pollution is equal to its marginal social damage.
In practice the social damage function is not known by the regulator, and information about

it which may be available are questionable. Our purpose in this paper is to design an instrument
that does not rest on such pieces of information and nevertheless induces the agents to achieve35

the socially optimal levels of emissions as a Nash equilibrium. Our proposal applies to the class
of non point source regulation problems where emitters are also the recipients of the externality.
In order to implement it, the regulator needs to observe the level of ambient pollution and to
know the number of agents involved in the problem. But neither the observation of individual
emissions nor the knowledge of the social cost are needed.40

The mechanism operates as follows: the regulator asks each agent both to choose a level
of emission and to provide his expectation about the aggregate level of emission, the ambient
pollution. He also announces the following rule: if the actual level of ambient pollution is above
the level predicted by the agent, the latter will be liable to a tax proportional to the gap. The
key of the mechanism lies in the tax rate which is equal to the proportion of other agents in the45

population, i.e. n�1
n
. Under laissez-faire each agent chooses a level of emission such that the

marginal utility gain of his emissions equals his marginal utility loss from pollution. Once the
tax on expectation errors is introduced, each agent takes into account the externality he exerts
on the n� 1 other agents when choosing his own level of emission.
This note is organized as follows. The next section presents a non point source pollution50

framework. Section 3 explains our mechanism, the regulated game that goes with it, and it
demonstrates that its Nash equilibrium exists, is unique under a normality condition and that it
corresponds to a Pareto optimal allocation. The last section offers �nal remarks.

2 A non point source pollution framework

Consider n agents, indexed i = 1; :::; n who emit individual pollutants ei 2 Ei =
�
0; ei

�
� R+;

where Ei is a compact and convex subset of the positive real numbers. Individual emissions
aggregate into an ambient pollution level

X =
nX
h=1

eh:

An allocation is a n + 1 dimensional vector (e1; :::; en; X) 2 �ni=1Eh � R+. A typical agent
i is endowed with a preference ordering over the allocations. His ordering can be represented
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by a continuous, differentiable utility function, which is strictly increasing with the agent's own
emission ei and strictly decreasing with the ambient pollution X:

U i (ei; X) ; U i1 > 0; U
i
2 < 0;

where U i1 = @U i=@ei and U i2 = @U i=@X . We also assume that the Hessian matrix Hess (U i)55

is semi de�nite negative (hence utility functions are concave).
Let us assume that corner decisions are dominated strategies, i.e. 8i and whatever the others'

strategies e�i =
P

h 6=i eh, lim ei!0MRS
i (ei; ei + e�i) < 1 and lim ei!eiMRS

i (ei; ei + e�i) >
1; where

MRSi (ei; X) = �U i2 (ei; X) =U i1 (ei; X)
is the absolute value of themarginal rate of substitution between agent i's emission and ambient
pollution. Any interior Nash equilibria (ee1; :::; een) solves the system of equations:

MRSi (ei; X) = 1; i = 1; :::; n: (1)

On the other hand, interior Pareto optima (e�1; :::; e�n)must satisfy the Bowen-Lindhal-Samuelson
(BLS) condition: X

h

MRSh (eh; X) = 1: (2)

In general (1) and (2) admit different solutions, i.e. Nash equillibria are not Pareto optimal
allocations. This comes as no surprise since in the absence of cooperation, when choosing his
level of emission each agent i is weighing his marginal advantage U i1 (ei; X) compared to his
individual marginal cost U i2 (ei; X), while social ef�ciency requires to put individual advantages60

against the marginal social cost
P

h U
h
2 (eh; X). This social dilemma calls for some intervention

from a benevolent authority.
It is worth noting that this model can be seen as a reduced form, which can accommodate two

interpretations. In a �rst approach, each agent is a farm household, which consumes from the
proceeds of its production, but production is accompanied by individual pollutions. In summary,65

more individual consumption is associated with more individual pollution. Households have
preferences de�ned over consumption and aggregate pollution. Pareto optima in that case are
allocations that maximize the social welfare of the community of farm households producing
and suffering from pollution. In a second approach, agents are �rms in the usual sense. In that
case, functions U i are better called pro�t functions. The ambient pollution is then an externality70

that adversely affects �rms' cost and allocations that maximize the producers' surplus satisfy
the BLS condition (2).

Example 1. Let the utility functions be:

U i (ei; X) = aei �
b

2
(ei)

2 � cX:
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At the Nash equilibrium, individual decisions are:

eei = a� c
b

;

and the symmetric Pareto optimum is:

e�i =
a� nc
b

< eei:
3 The mechanism

3.1 The regulator's information and the regulated game

From the point of view of the regulator, the information structure we consider has two aspects:75

1. the regulator cannot observe individual emissions (or only at prohibitive costs). This
assumption de�nes the framework as a non point source regulation problem.

2. and he also ignores the agents' utility functions, that are subjective attributes to be elicited.
This information asymmetry is at the root of an implementation problem.

Those two informational conditions have been studied separately by two (related) strands of80

literature. The literature on ambient pollution considered only the �rst aspect. Collective penal-
ties could therefore be de�ned by targeting a particular pollution level. If it turns out that this
level is a Pareto optimal one, collective penalties induce a Pareto optimal outcome. Otherwise
this optimality property has no reason to hold. It is conditional on the possibility to elicit agents'
utility functions in order to compute the social cost, by some means. The second literature, the85

theory of mechanisms design, speci�cally addresses the issue of information asymmetry, about
preferences, between agents and the regulatory authority. But it assumes that individual actions
are perfectly observable, so that adequately designed transfers can be de�ned conditionally on
the realization of those actions.
Clearly, for a large class of non point source problems, internal consistency requires to90

merge those two aspects. This is the way we initiate in this paper.
The regulator solicits information from the agents and uses the collected pieces of informa-

tion to set up a system of incentive taxes, that cannot be based on individual emission because
they are not observable, but can be based on ambient pollution.
Each agent is asked to state his expectation of the level of aggregate pollution, which will

be denoted bXi 2 [0;
P

h eh] : Simultaneously he decides upon his level of emission, given that
he will have to pay a penalty that depends only on the gap between the actual and his expected
level of aggregate emissions:

T i
� bXi; X

�
=

�
k(X � bXi) if X � bXi:

0 otherwise,
(3)

4



where k 2 [0; 1] is a parameter that will play a crucial role in the following. Expression (3) is a95

tax for agent i only if the realized aggregate pollution is larger than his forecast. This formula
contains the original suggestion we make in this article, which departs from existing formulas
in two respects: i) the target for the ambient pollution is not exogenously given to the agents.
On the contrary, each agent announces his own target bXi, ii) the price k for units of pollution
above the target is not set equal to the marginal social damage on others, since this information100

is not available to the regulator. However, we will see below that this parameter can be attributed
a value, based on available information, that will induce Pareto optimality.
This mechanism de�nes a class of games con�gured by parameter k. In a k - game each

agent i has two decision variables to be determined simultaneously, ei 2 Ei � R+ and bXi 2
[0;
P

h eh]. And faced with this scheme, his payoff (or utility) thus becomes:

�i
�
ei; e�i; bXi

�
�
(
U i
�
ei � k(ei + e�i � bXi); ei + e�i

�
if ei + e�i � bXi ;

U i (ei; ei + e�i) otherwise.

3.2 The k - interior Nash equilibrium
Under the assumption that the game played by the agents is one of complete information and
with common knowledge, the Nash equilibrium is a usual predictor for non cooperative deci-105

sions. We will focus on the case where the Nash equilibrium is made of interior decisions.

De�nition 1. A k - interior Nash equilibrium (k -INE) is a vector of individual emissions

(ei (k) ; :::; en (k)) 2 �nh=1Eh ;

a pro�le of announcements:

� bX1 (k) ; :::; bXn (k)
�
2
"
0;
X
h

eh

#n
;

and a pro�le of transfers�
T1
� bX1 (k) ; X (k)

�
; :::;Tn

� bXn (k) ; X (k)
��
2 Rn+ ;

such that:

1. announcement decisions bXi (k) ; i = 1; :::; n match aggregate emissions:

bXi (k) =
X
h

eh (k) ; i = 1; :::; n:
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2. Emission decisions ei (k) ; i = 1; :::; n solve the system of necessary conditions:

MRSi

 
ei;
X
h

eh

!
= 1� k; i = 1; :::; n: (4)

To grasp item 1 in the above de�nition, consider the point of view of agent i. Given his
best educated guess about the emissions by the other agents, ee�i, and given the own choice of
emission eei he contemplates, clearly his best announcement is bXi = eei + ee�i;With this choice
he pays no tax. A lower announcement triggers a penalty, and a higher announcement does not
increase further his utility. Regarding the equilibrium transfers, an implication of item 1 is:

Ti (k) � T i
 bXi (k) ;

X
h

eh (k)

!
= 0; i = 1; :::; n:

Each equilibrium transfer is zero since, at a k - INE, announcements and ambient pollution
are identical. This is an interesting advantage from a practical point of view, since mechanisms
themselves have implementation costs that are likely to be larger for larger transfers. Here those110

costs are probably minimized.
The second item in the de�nition is the usual �rst order condition for interior optimal indi-

vidual emissions. Consistently with this second item, it is easy to single out economic environ-
ments that discard corner decisions as dominated strategies:

Assumption 1. Assume, 8i;8e�i;8 bXi :

lim ei!0 MRS
i
�
ei � T i

� bXi; ei + e�i

�
; ei + e�i

�
< (1� k)

and
lim ei!ei MRS

i
�
ei � T i

� bXi; ei + e�i

�
; ei + e�i

�
> (1� k) :

Theorem 1 (Existence). The k - game admits at least one Nash equilibrium. Under Assumption115

1, any Nash equilibrium is interior (k - INE).

Proof. See Appendix A.1.
For reasons that will become clear below, let us now focus on the case where k = 1� 1=n:

With this value for parameter k, each agent is taxed up to the share (n� 1) =n of the aggregate
externality generated. And the �rst order conditions (4) rewrite:

MRSi (ei; X) =
1

n
; i = 1; :::; n:

It is as if the agent's marginal utility of polluting that goes through the �rst argument in his
payoff function was cut down to only (1=n)th of the original level, making individual emissions
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less advantageous. We are now in position to make a crucial observation. By summing-up the
above equations over the agents:

nX
h=1

MRSh (eh; X) = 1;

one �nds the BLS conditions (2). At the same time:

Ti
� bXi (1� 1=n) ; X (1� 1=n)

�
= 0; 8i:

Therefore a k - INE has the following desirable property:

Theorem 2 (Pareto optimality). A k - INE with k = 1� 1=n; is a Pareto optimal allocation.

In practice the exact number n of agents involved in the pollution problem might not be120

known exactly. In this case, a k - INE only approaches a Pareto optimal allocation. Intuitively,
as parameter k gets larger the individual incentives to pollute at a k - INE are getting weaker,
and when the number of agents used to construct the mechanism increases to get closer to its
true value n, the k - INE eventually gets closer to a Pareto optimal allocation.

Example 2 (continued). With the mechanism, and when the forecast is correct bXi =
X

h
eeh,

the Nash equilibrium is now con�gured by parameter k:

eei (k) = a� c
1�k
b

:

And when k = 1� 1=n; the Nash equilibrium is Pareto optimal:

eei�n� 1
n

�
=
a� nc
b

= e�i :

In the above example, the k - INE exists and is unique. Uniqueness is an interesting property125

since the Nash implementation approach is often plagued with a serious problem of multiplicity
of equilibria. To put it differently, Nash-implementation mechanisms often solve the social
dilemma but at the cost of a coordination problem. Can we expect the uniqueness property to
hold beyond our illustration? Under what condition can we guarantee this property?
To analyze this question, it will prove useful to reformulate each agent's problem. De�ne

ci = ei � k
�
X � bXi

�
;

= X �X�i + k
� bXi �X

�
:

Or upon rewriting:
ci � (1� k)X = k bXi �X�i : (5)
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With this rewriting, each agent's problem can be seen as one where the goal is to choose X
in order to maximize:

U i (ci; X) ;

subject to (5) and X � X�i. It looks like a consumer's problem, who is endowed with an130

exogenous "income" yi = k bXi�X�i; and has to allocate it optimally between his consumption
of a private good ci and of cleanup �X , whose price relative to ci is p = 1 � k. Denote
ci = C

i (p; yi) and X = Di (p; yi) the two demand functions derived from this problem. And
assume that ci and �X are normal goods, i.e. the demands Ci (p; yi) and X = Di (p; yi) are
respectively strictly increasing and strictly decreasing functions of income:135

Assumption 2 (Normality). Ci2 (p; yi) > 0; Di
2 (p; yi) < 0.

As far as X is concerned, the normality assumption is akin to a form of strategic comple-
mentarity: the larger the aggregate contributions of others, X�i, the lower yi and the larger
X .

Theorem 3 (Uniqueness). If Assumption 2 holds, the k - INE is unique.140

Proof. See Appendix A.2.
This result applies also in the particular case where k = 1�1=n;, which ensures that a Pareto

optimal allocation can be implemented as a unique interior Nash equilibrium. Assumption 2 can
be relaxed somewhat in order to hold only for the particular value k = 1�1=n that is consistent
with Pareto optimality.145

Example 3 (continued). Applying the reformulation (5) to the quadratic example, each agent's
problem now reads as:

max
X
U i (ci; X) = a [pX + yi]�

b

2
[pX + yi]

2 � cX:

subject to the constraint X � k bXi � yi: The two demand functions are:

ci = Ci (p; yi) =
a� c=p
b

+ (1� p=b) yi ;

X = Di (p; yi) =
a� c=p
bp

� yi
b
:

As one can readily check, consumption and cleanup (�X) are normal goods.

4 Conclusion
Three last remarks are in order.
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Firstly, the mechanism proposed here has a similarity to Falkinger's mechanism (1996) that
Nash implements a Pareto outcome in the public good model. It also uses a price for the ex-150

ternality which is calibrated by using the number of agents involved in the problem as the only
piece of information. Actually, his formula for k is exactly the same as ours (k = 1 � 1=n).
But Falkinger's mechanism differs in that it penalizes or subsidizes deviations between own
decisions and average decisions by others, whereas our mechanism introduces a new decision
variable for each agent (his forecast about ambient pollution) and it only penalizes deviations be-155

tween actual aggregate decisions and individual forecasts. A second difference lies in the num-
ber of Nash equilibria that can be unique with our mechanism (Theorem 3), whereas Falkinger's
mechanism (1996) has a continuum of Nash equilibria when k = 1�1=n, though the Nash equi-
librium can be unique for arbitrarily lower values of k. For this reason, Falkinger suggests to
use his mechanism with k ' 1�1=n, in order to implement near-optimal contributions to public160

goods.
Secondly, at a k - INE the budget of the regulatory authority is balanced. But this prop-

erty need not hold outside equilibrium decisions. More precisely, as soon as one agent makes
a wrong prediction, a penalty will be paid and this will produce a budget surplus. Many mech-
anisms try, by construction, to avoid the imbalance of the budget. The reason comes from an165

implicit general equilibrium perspective, from which one deduces that any budget surplus nec-
essarily returns to some economic agents (see for instance the discussion in Green and Laffont,
1979, Chap. 9). This redistribution, if correctly anticipated by agents, may compromise the
good incentive properties of the mechanism under consideration. In defence of unbalanced
budgets, one �nds at least three possible reactions in the literature. The �rst one is that the regu-170

lator could announce that any redistribution of surplus will be lump-sum, hence without effects
on incentives. The second one is to assume a form of myopia from the agents regarding the
redistribution of the public budget. The last reaction does not rest on an assumption of bounded
rationality. It assumes a partial equilibrium point of view, which is more in line with the prob-
lem studied in this paper. The economy has many agents and only a small subset of them is175

involved in the non point source pollution problem. A budget surplus, if any, can be redistrib-
uted to the rest of society, hence without interfering with the incentives given to the regulated
agents. The budget surplus may even produce a double dividend, by �nancing interventions to
promote other social goals.
Lastly, this paper is the �rst of its kind at the intersection of the literature on non point source180

pollution and on the design of mechanisms and may provide inspiration to sketch a research pro-
gram. Just repeat the steps that each of the two literatures has already travelled by separately,
while taking now into account both the constraints of non-observability and information asym-
metry. For example, one could search for general possibility results of implementation in Nash
equilibrium when only aggregate decisions can serve as support for incitative transfers.185
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Appendix190

A Existence and uniqueness of a k - INE

A.1 Existence

A standard set of suf�cient conditions for the existence of pure strategy Nash equilibria is:
i) strategy sets are non empty compact and convex sets, ii) for each player, his payoffs are
continuous and quasi-concave with respect to his own decision variables.195

The �rst condition is satis�ed in the k - game. Regarding the second condition, payoff func-
tions are continuous (though they are not differentiable everywhere because of the transfers),
but quasi-concavity is an open question. For each agent i, taking e�i and bXi as given parameters
we must ascertain the quasi-concavity of the function:

�i (ei) �
(
f i (ei) if ei < bXi � e�i ;
gi (ei) if ei � bXi � e�i.

(6)

where

f i (ei) � U i (ei; ei + e�i) ;

gi (ei) � U i
�
ei � k

�
ei + e�i � bXi

�
; ei + e�i

�
:

Actually it can be shown that �i (:) is concave (hence it is quasi-concave). The architecture
of the proof is to show that the functions f i(:) and gi(:) are concave and that combination of
both in (6) has a "min" property (see below). The latter property is important to establish the
concavity of function �i (:). The concavity of both functions f i(:) and gi(:) is not enough to
guarantee that �i (:) is also concave. It is easy to exhibit examples where f i(:) and gi(:) are200

concave, whereas �i (:) is not.
Note that f i (:) is concave by de�nition. And it can be shown that gi (:) is concave as well.

Indeed it second order derivative is:

gi00 (ei) = (1� k)2 U i11 + 2 (1� k)U i12 + U i22:

10



And from the assumptions we made about utility functions:

v �Hess
�
U i
�
� vT = [v1; v2] �

�
U i11 U i12
U i21 U i22

�
�
�
v1
v2

�
� 0; 8v = [v1; v2] 2 R2:

To obtain the sign gi00 (ei) � 0; showing that gi is concave, it suf�ces to substitute the vector
[v1; v2] = [1� k; 1] in the above inequality.
The important "min" property mentioned above is the following: because U i1 > 0, function

�i (:) can also be written as:

�i (ei) � min
�
f i (ei) ; g

i (ei)
	
:

This is easy to check. For all ei < bXi�e�i ; under gi(:) agent i would perceive a subsidy, hence
f i (:) � gi (:) : And as soon as ei � bXi � e�i ; under gi(:) agent i would be liable to a tax, thus205

gi (:) � f i (:) :
Recall that by de�nition a concave function is such that the set of points lying on or below

its graph, i.e. its hypograph, is convex. Since f i (ei) and gi (ei) are concave, their hypographs:

hypo
�
f i
�
=

�
(ei; �i) 2 Ei � R : f i (ei) � �i

	
;

hypo
�
gi
�
=

�
(ei; �i) 2 Ei � R : gi (ei) � �i

	
;

are convex. And the hypograph of �i (:) is:

hypo
�
�i
�
=

�
(ei; �i) 2 Ei � R : �i (ei) � �i

	
;

= hypo
�
f i
�
\ hypo

�
gi
�
;

where the second line is obtained because �i (:) is constructed as the min of f i (:) and gi (:).
So hypo (�i) is necessarily convex, as the intersection of two convex sets. Therefore �i (:) is
concave and the set of Nash equilibria for the k-game is not empty.
Of course, this does not mean that (some) Nash equilibria are interior. However, Assumption210

1 rules out corner decisions, which ensures in this case the existence of at least one interior Nash
equilibrium.
QED.

A.2 Uniqueness

The strategy of proof given here follows the elegant one offered by Andreoni and Bergstrom215

(1996) for the case of Nash contributions to a public good, though some modi�cations are
required in our context, because action spaces also incorporate the announcements bXi; i =
1; :::n.
To prove uniqueness in Theorem 3 we �rst need the following lemma:
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Lemma 1. Suppose there exists two distinct k - INE, denoted
�
e01; :::; e

0
n;
bX 0
1; :::;

bX 0
n

�
and220 �

e001; :::; e
00
n;
bX 00
1 ; :::;

bX 00
n

�
, and suppose without loss of generality that X 00 � X 0. Then for any

agent i,

i) k bX 00
i �X 00

�i � k bX 0
i �X 0

�i ;

ii) X 00
�i =

P
h 6=i e

00
h � X 0

�i =
P

h 6=i e
0
h :

Proof. Since
�
e001; :::; e

00
n;
bX 00
1 ; :::;

bX 00
n

�
is a k - INE, it must be the case that X 00 =

Pn
h=1 e

00
h =225

Di
�
p; k bX 00

i �X 00
�i

�
: By the same argument, it must also be the case that X 0 =

Pn
h=1 e

0
h =

Di
�
p; k bX 0

i �X 0
�i

�
:And since by assumptionX 00 � X 0; one must deduce thatDi

�
p; k bX 00

i �X 00
�i

�
� Di

�
p; k bX 0

i �X 0
�i

�
: And, if ambient clean-up is a normal good, one obtains item i) of

the Lemma, i.e. k bX 00
i � X 00

�i � k bX 0
i � X 0

�i : To demonstrate item ii), rewrite item i) as
k
� bX 00

i � bX 0
i

�
� X 00

�i � X 0
�i: Finally, using the properties that bX 00

i = X 00; bX 0
i = X 0 at any230

k - INE, and the assumption X 00 � X 0 one arrives at item ii) of the Lemma, X 00
�i � X 0

�i :
Equipped with this Lemma, assume by way of contradiction that there exists (at least) two

distinct k - INE �
e01; :::; e

0
n; bX 0

1; :::; bX 0
n

�
;

and �
e001; :::; e

00
n; bX 00

1 ; :::; bX 00
n

�
:

Suppose, without loss of generality, that X 00 =
P

h e
00
h � X 0 =

P
h e

0
h: Then according to item

ii) in Lemma 1, it must be the case that, for any agent i, X 00
�i =

P
h 6=i e

00
h � X 0

�i =
P

h 6=i e
0
h:

And, since the two equilibria are distinct, for some agent i the previous inequality is strict,
X 00
�i > X

0
�i; which implies:

X 00 > X 0: (7)
Since ci is a normal good and, from item i) in Lemma 1, k bX 0

i � X 0
�i � k bX 00

i � X 00
�i, then

c0i = C
i
�
p; k bX 0

i �X 0
�i

�
� c00i = Ci

�
p; k bX 00

i �X 00
�i

�
for all i and with a strict inequality for at

least one agent. Therefore
P

h c
0
h >

P
h c

00
h. But in equilibrium it must also be:

nX
h=1

c0h =
nX
h=1

e0h = X
0

Applying the same observation to the second k - INE, one �nds:X
h

c00h =

nX
h=1

e00h = X
00:

Necessarily, if
P

h c
0
h >

P
h c

00
h then X 00 < X 0; in contradiction with (7). So there cannot be

two distinct k - INE. QED.
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