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Abstract

It is common knowledge that the taste of a wine depends on Natural Conditions (NCs)
where grapes have grown, and that Geographical Indications (GIs), by grouping together similar
NCs, also provide some information about the taste of a wine. Both GIs and NCs potentially add
value to wineyards. However, disentangling their relative contributions is complex because of
their spatial nesting. In this paper, we propose an estimation method that allows evaluating these
contributions. This method takes into account some potential unobserved NCs and the resulting
endogeneity of GIs in the hedonic equation. Using original data about wineyard sales from
Burgundy (France), we find, in accordance with previous studies, that GIs are a more important
source of wineyard price variation than NCs. However, taking into account the possibility of
spatially omitted biophysical variables implies at least more than a doubling of the explained
part from NCs (from 8% to 17%, where the GIs’ parts fall from 51% to 37%). Taking into
account the endogenity of GIs also sharply decreases their economic importance. From a naive
per-hectare premium of e 1.32 million for the most famous GIs (Grand Cru), the estimate of
our prefered model is about e 0.35 million, still highly significant nervertheless.
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1 Introduction

It is generally acknowledged that the taste of a wine depends on Natural Conditions (NCs) where
grapes have grown and that consumers rarely taste a wine before purchasing. As a mean to
differentiate wines produced in similar NCs and to provide this simplified, objective information
to potential consumers, the relevance of Geographical Indications (GIs) is obvious. What is less
obvious is the relative contributions of these two nested characteristics – NCs and GIs – in the final
value of wines. This decomposition is nevertheless central because, in addition to the value added
from information availability (Akerlof 1970 ; Nelson 1970 ; Menapace and Moschini 2012), GIs are
also potential sources of undeserved rents for producers (Mussa and Rosen 1978 ; Besanko et al.,
1987 ; Mérel and Sexton 2012). The economic outcomes of GIs are a combination of vertuous
informational content and surplus extraction by limiting supply and artificially segmenting wine
markets, making their recognition conflicting in trade negociations (Josling, 2006).

A large number of empirical papers is concerned with the determinants of wine value. Based on
data about wine prices, it appears that producer’s reputation (Combris et al. 1997 ; Ali and Nauges
2007), technology (Gergaud and Ginsburgh, 2008) and expert’s opinion (Ali et al. 2008 ; Dubois
and Nauges 2010) are important explanatory variables. However, uninformed consumers also use
bottle price as a signal of quality, making the causal interpretation more delicate (Nerlove 1995 ;
Costanigro et al. 2007 ; Schnabel and Storchmann 2010). Wine quality is also signaled through
GIs that are found to provide positive premiums (Ashenfelter et al. 1995 ; Combris et al. 2000 ;
Carew and Florkowski 2010) increasing with wine prices (Costanigro et al., 2010). Even if they are
more scarce, some papers study the effects of NCs such as year to year climate variations (Lecocq
and Visser 2006 ; Ashenfelter 2008) or land characteristics and exposure (Gergaud and Ginsburgh,
2008). Analysing the effects of NCs on bottle prices is complicated by the necessity to match
precisely the wines to the NCs where grapes grown. Consequently, the two closest papers to this
one (Ashenfelter and Storchmann 2010 ; Cross et al., 2011) prefer using wineyard sale prices to
identify the value of what we call NCs. The results of these two last papers are contrasted, using
respectively data from the Mosel Valley (Germany) and the Willamette Valley (OR, United States).
The first finds a strong effect of NCs through solar radiation index and the second does not find any
significant effect, with or without controlling by GIs. Both find a positive effect of GIs on wineyard
sale prices, up to $7,000 per-acre for Cross et al. (2011) (Table 2, p. 155).

Starting with a reduced equation from the hedonic theory applied to farmland (Palmquist, 1989),
the present methodology semiparametrically estimates the effects of NCs through B-splines (Anglin
and Gencay 1996 ; Bao and Wan 2004 ; Li and Racine 2007). It integrates potentially measurement
errors and omitted biophysical variables that describes NCs, a recurrent weakness of previous studies
(Oczkowski, 2001). However, allowing for this possibility requires to model GIs as functions of
NCs in a first step. Although the exogeneity of biophysical variables is indisputable, GIs are
spatially designated to picture similar (observed and unobserved) NCs, making them endogenous.
In this context, our empirical strategy is twofold. (i) NCs are inherently a continous spatial
signal. Therefore, we argue that semiparametric Spatial Trend Surfaces (STSs) from geographical
coordinates may act as proxies of the unobservable biophysical variables (Kammann and Wand
2003 ; Fik et al. 2003 ; McMillen 2010). (ii) Spatially discontinous GIs are designated on the basis
of historical considerations sometimes orthogonal to the NCs of wineyards (favoritism, personal
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influences or false believes about biological mecanisms, according to Stanziani 2004 and Norman
2010). Therefore, the endogeneity of GIs is controlled by using a more than two century old
administrative subdivision (the communes) as multinomial instrumental variable. We evaluate their
appropriatness for the identification both through spatial error autocorrelation (Anselin 1988, used
as a test for misspecification by McMillen, 2003 and Le Gallo and Fingleton 2012) and through
some adaptations of the IV post-regression tests to our particular case.

We apply our proposed methodology on a quasi-exhaustive database about wineyard sales
1992–2008 in two wine regions within the French administrative region of Burgundy. These two
regions of wine production (Côte de Beaune, CDB, and Côte de Nuits, CDN) probably group the
most expensive wineyards of the world, as they contain 37 wines in the 50 most expensive.1 Within
these regions, GIs actually consist in a common hierarchy of wineyard plots (and resulting wines)
according to a nationally wide scheme, the Appellations d’Origine Controlée (AOCs). First legally
established in 1855 for Burgundy under another scheme, these delineations initially come from
land classification schemes by the monks from Cîteaux around the Xth century (Stanziani 2004 ;
Norman 2010). Actual GIs divide symetrically the two wine regions in Grands Crus (GCRUs),
Premiers Crus (PCRUs), Villages (VILLs), Bourgognes Régionaux (BOURs) and Grands Ordinaires
(BGORs), listed from the most famous to the less.2 These wineyards from Burgundy constitute a
well-shaped application for at least three reasons:

1. GIs are delimited very finely (at the plot scale) and wineyard sale prices can be perfectly
matched with this information. Moreover, the presence of GIs’ names on the labels of wine
bottles is highly regulated through mandatory information and font sizes as examples.

2. CDB and CDN produce overwhelmingly terroir wines, implying a high homogenity in terms
of both grape variety, technology and wine making process (Norman, 2010). Two grape
varieties represent more than 95% of the acreages (chardonnay and pinot noir).

3. Wine production and wineyard classification have a long history. This long-run temporal
predetermination of GIs provides some current variations of GIs orthogonal to NCs. What
was probably the result from lobbying two century ago is today arbitrary, hence exogenous.

The first point allows us to model GIs without errors-in-variables and to have high variations
of GIs at a fine scale, i.e., for locally similar NCs. The second point reinforces the use of the
hedonic theory applied to farmland that substitutes the producers by the landowners as the agent
from which the value is infered: Burgundy wine production presents less unobserved heterogeneity
than other potential French wine region. The third point allows us to identify the structural (causal)
effect of GIs even if some NCs, correlated with GIs, are omitted from the regression functions.
Contributions.

The outline of the paper is as follows. The section 2 presents the empirical issues relative to our
study: omitted variables, endogeneity of GIs’ designations. The data are presented in section 3. The
results are reported in section 4. Finally, section 5 concludes.

1http://www.wine-searcher.com/most-expensive-wines (last accessed: September 8, 2013)
2These five GIs are a grouping of the approximatively 800 official AOCs that the Burgundy counts, just for

its wines. This classification in five items (distinctively and systematically reported on the labels of wine bottles)
provides an information about an objective quality, which is not the case for the numerous within AOCs. See http:
//www.vins-bourgogne.fr/gallery_files/site/12881/13118/18581.pdf (last accessed: September 8, 2013).
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2 Empirical Issues

2.1 Separating GIs from NCs within an hedonic model

Because land is a non reproducible fixed asset, the Ricardian principle is that its price capitalizes
the comparative advantages provided to the final user. Therefore land price is a convenient and
well-used metric to recover the values associated to a large variety of spatialized attributes that
matter economically (soil quality, legislative constrains, climate, ecosystem services, agricultural
subsidies, see Ay and Latruffe 2013). Integrated within the hedonic framework, this moves the
focus of valuation from the output market to the landowners though the assumption of competitive
land markets. In our case, this helpfully allows to neglect the complex effects of producer’s wine
portfolio, technology, reputation and ability, and the effects of consumer’s information, preference
and habits to concentrate the modeling effort on the willingness-to-pay of potential landowners with
the highest bids.

By buying a wineyard plot i, a buyer acquires both the effects of NCs on grape quality and
the right to put the associated GIs on the wine that comes from this plot. Buyers and sellers are
assumed to have a perfect information about both GIs and NCs, so the values of these attributes are
totally capitalized in the observed price per hectare pi. The econometrician only observes a part
of the biophysical variables representing the NCs (Bi), and the vector of GIs noted Di. The other
biophysical variables Wi are not observable but matter for observed land prices.

pi = α + βB>i + γW>
i + δD>i + εi (1)

The row vectors β, γ and δ are the marginal prices and εi the residual with the usual properties.
This is the classical hedonic framework, which, without loss of generality, we assume to be linear in
paramaters for mathematical convenience. This equation admits non linear effects of variables, the
general hedonic case according to Ekeland et al. (2004). In order to simplify notations, we consider
the endogenous and the exogenous variables as nets of other price determinants that are neither GIs
nor NCs: price inflation, buyer/seller characteristics or urban influence as examples. According to
the Frisch-Waugh-Lovell (FWL) theorem, it is always possible to orthogonalize the variables of a
regression model and analyse their effects separatly (Davidson and MacKinnon, 2004).

Coupled with the zero conditional mean assumption E(εi | Bi, Di,Wi) = 0, equation (1)
describes a structural relationship. Therefore, the Total Sum of Squares (SST ) of wineyard prices
(their variance) can be decomposed in the sum of the Explained Sum of Squares (SSE) and the
Residual Sum of Squares (SSR) according to the classical formula: SST = SSE + SSR. The
assumption of structural residuals involves a null covariance between the explanatory variables and
the residuals, ensuring a uniquely-defined additive decomposition between the explained and the
unexplained part of price variations. The respective contributions of GIs and NCs are nested in
SSE and are clearly indistinguishable at this point. Opening the black box of the explained part
of price variations leads to an additive decomposition based on price’s conditional expectations
evaluated at the sample averages of the different variable sets.

SSE =
∑

i

(
p̂Bi − p

)2
+
∑

i

(
p̂Di − p

)2
+
∑

i

(
p̂Wi − p

)2
+ 2 · Ω̂ (2)
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with p̂Bi ≡ E(pi | Bi, D,W ) = α̂ + β̂B>i + δ̂D
>

+ γ̂W
>

(3)

p̂Di ≡ E(pi | B,Di,W ) = α̂ + β̂B
>

+ δ̂D>i + γ̂W
>

(4)

p̂Wi ≡ E(pi | B,D,Wi) = α̂ + β̂B
>

+ δ̂D
>

+ γ̂W>
i (5)

and Ω̂ = β̂δ̂ · cov(Bi, Di) + β̂γ̂ · cov(Bi,Wi) + δ̂γ̂ · cov(Di,Wi) (6)

The decomposition (2) is non unique but has the interest – relatively to alternative formulations,
see Appendix XX – to treat symetrically both sets of variables. The interaction effect Ω is not
strictly allocable to a particular set of variables. It represents the loss of precision in the price
decomposition due to correlations between wineyard attributes. It is interesting to note a parallel
of this interaction effect with the problem of covariate imbalance in the treatment effect litterature
(Rosenbaum and Rubin 1984 ; Imbens 2000). The respective contributions of each set of variables
are more precisely estimated when covariates are perfectly balanced, in which case Ω̂ = 0.

If we are only interested in the joint effect of biophysical variables Bi ∪Wi (noted SSB) to
describe the effects of NCs, we can bind the SSE from B and W as well as the interaction between
these two subsets of variables.

SSB ≡
∑

i

(
p̂Bi − p

)2
+
∑

i

(
p̂Wi − p

)2
+
∑

i

(
p̂Bi − p

)(
p̂Wi − p

)
(7)

Only looking for SSB allows us to neglect the correlations between biophysical variables,
letting our methodology free of assumptions about them. Nevertheless, the correlations with Di

stay of interest, as the direct part from the sum of squares of GIs which that are the same as
in (2): SSD =

∑
i

(
p̂Di − p

)2. So, the decomposition of interest is about the uniquely defined
SSE = SST − SSR and consists in indentifying the sum of SSB, SSD and two weighted
covariances – between (Bi, Di) and (Wi, Di) – that we note respectively ΩBD and ΩWD.

2.2 Omitted variable bias and proxy solution

By considering Wi as unobservable, this framework is sufficiently general to include the possibility
that Bi contains error-in-variables,3 another usual problem in analysing the effects of biophysical
variables on land prices. Therefore, the following “naive” estimation of the structural equation (1)
would imply biased parameters (Wooldridge, 2002).

pi = αo + βoB>i + δoD>i + εoi (8)

In the (likely) case of positive correlations between Wi and both Bi and Di, the coefficients
βo and δo are upward biased as the estimated residuals. The effects of Wi are allocated between
the three last terms of the Right Hand Side of (8). In the resulting decomposition SST = SSBo +
SSDo +SSRo + 2(Ωo

BD + Ωo
WB), SSBo is downward biased relatively to SSB and the two others

sums of square are upward biased. Note that, contrary to SSBo and SSRo, the bias in SSDo only
comes from the bias in the parameters βo and δo.

3Because the correlations betweenBi andWi are not constrained, one can consider the difference between measured
and true values of Bi as an additional column of Wi.
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One solution to recover the structural decomposition consists in including a supplementary
term (a proxy) in the regression function. Because of the strong spatial patterns displayed by
observed and unobserved biophysical variables (both from litterature and evidences from our data,
see section 3), we use a Spatial Trend Surfaces (STSs) of geographical coordinates as this additional
term. This approach – also called GeoAdditive modeling – allows to control some unobserved local
effects in the regressions (Kammann and Wand 2003 ; Fik et al. 2003 ; McMillen 2010). In our
case, the STS ` substitutes with errors the effect of Wi.

γWi = `(xi, yi) + ηi (9)

The variables xi and yi represent respectively the longitude and the latitude of the plot i. The
term ηi is a residual component, uncorrelated with the STS by construction. Because of the zero
conditional mean assumption on the structural model, we also know that these proxy residuals are
uncorrelated with the structural main residuals εi. The resulting empirical model from the proxy
solution induces a specific set of estimators indexed r.

pi = αr + βrB>i + δrD>i + `r(xi, yi) + εri (10)

It is generally acknowledged that the proxy variable solution provides a reliable estimation of
the coefficients, but under strong assumptions. Wooldridge (2002, Chapter 4, pp. 63–64) provides
the sufficient conditions to trust a proxy variable solution, that we adapt to our case.

cov(xi, εi) = cov(yi, εi) = 0 (11)
cov(xi, Bi) = cov(yi, Bi) = 0 (12)
cov(xi, Di) = cov(yi, Di) = 0 (13)

The first condition (11) implies that the proxy variables do not have their own effect on
the outcome (i.e., independently from Wi). This is rarely controversial in classical approaches
(according to Wooldridge, 2002) but can be problematic here as it is possible that location impacts
wineyard prices even if Wi is accounted for. Geographical coordinates have probably some proper
effects: neighborhood effects, external economies, local land scarcity as exemples. For the price
decompositions, the main implication of this condition is to know if the effects of `r(xi, yi) have to
be included in the SSBr or in the SSRr. If (11) is verified, the effects of the proxies clearly have to
be included in SSBr. If not, the effects have to be included according to their correlations with Bi

(observable) and Wi (unobservable). Under general settings, including the proxy effects in SSBr

(i.e., considering (11) as verified) provides a upper bound and including only the correlation with
Bi a lower bound of the true SSB. We compute both.

The second condition (12) is necessary for the good allocation of effects between the STS and
the observed biophysical variables. It is not fundamental here because both effects could be grouped
in NCs if the condition (11) is verified: this condition is auxiliary to the first. However, to obtain
reliable decomposition, we substitute a less usual condition which comes from the fact that the
effects of Wi are directly of interest here, contrary to the classical proxy framework which is mainly
concerned on the coefficients of the true variables included in the model.
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cov(εri ,Wi) = 0 (14)

This condition can be called “completeness” as it implies that not any effects of NCs are in the
residuals from the proxy specification. Even if less conventional, this assumption could be tested
easily in our case by knowing the amount of spatial autocorrelation in εri . As such, standard spatial
autocorrelation test on residuals from the proxy model (Moran’s I for example, Anselin, 1988)
allows us to evaluate the presence of omitted NCs in the proxy equation.

The last condition (13) is more complicated, as it drives the decomposition between our two
main effects of interest: GIs and NCs. Without it, GIs are endogenous in the proxy regression and
contrary to the failure of (11) we cannot estimate an interval of credible values for SSB and SSD
without it. Relaxing this condition implies a non-trivial shift of the proxy solution that we adress
in the following subsection. Just keep in mind that the proxy solution needs this condition to be
reliable. Finally, a unbiased proxy estimation – conditions (11), (12), (13) verified – assures that
εri = εi + ηi. Consequently, SSRr overestimate SSR and, even if the parameters are without bias,
a reliable estimation of SSB through SSBr can not be obtained without (14).

2.3 Endogeneity of GIs’ designations

2.3.1 History behind GIs and the two stage models

It is useful to divide GIs’ designation choices in two additive parts: one that is based on NCs and
another that is not. The first part is a function of both observed and unobserved NCs, observability
still being defined from the econometrician point of view. For the practionners and with experience,
NCs are more precisely known and this knowledge is used in GIs’ designations. The second part
contains the deviations from this underlying NCs-based first part, in particular due to the previously
mentioned historical conditions. We assume that this second part is composed of a deterministic
term ψZ>i and a random one ξi. Because the GIs of interest have an ordinal structure (providing a
quality classification of the resulting wines as in Ashenfelter and Storchmann 2010), we model the
designation choices through a latent variable.

d∗i = θB>i + λW>
i +ψZ>i + ξi (15)

This variable d∗i is the sum of the NCs-based part (the two first terms of the RHS), the “historical”
part (the third term) and a residual (the last term). The first part does not represent truly what is
usually called the potential of a wineyard in terms of wine quality, an appreciation that has to be
done on the wine market (by the consumers in particular). Even based on “objective” NCs, this
part represents the subjective quality potential in the minds of peoples that delineated the GIs,
through the coefficients θ and λ. The matrix Zi typically contains historical conditions that have
influenced GIs’ designations: favoritism, personal influences or false believes about biological
mecanisms. Because these latter variables are not observables, we use a more than two century old
administrative subdivision that is known to be the local scale of political influence in French history.
In Burgundy in particular, communes existed even before the 1789 French revolution and were the
scale at which designation choices were made (Norman, 2010).
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Intuitively, these deviations from NCs in GIs’ designations provide a mean to separate the effects
of GIs on wineyard prices from unobserved NCs. With (15) and λ 6= 0, the unobserved biophysical
variables are clearly present in Di making (13) implausible. In effect, we have Di =

[
d1i · · · dJi

]
with J the number of GIs and with each component that comes from an indicator function.

dij = 1
[
µj−1 6 d∗i 6 µj

]
(16)

This structural form of GIs’ designation choices, (15) and (16), leads to an ordered qualitative
model. The vector µ =

[
µ0 · · ·µJ

]
groups the thresholds of the latent variable to be estimated. By

convention, we put µ0 = −∞ and µJ = +∞. Coupling these two last equations with (1), we obtain
a triangular system with an ordered structure of the J binary endogenous explanatory variables
which first appears in Vella (1993). From a structural perspective, this does not imply important
changes in the estimation process as the structural mean independence assumption stay verified
(Lahiri and Schmidt 1978). However, when coupled with the fact that Wi is unobserved, the proxy
solution is no longer usable due to the implausibility of (13). We can nevertheless write this first
step of GIs designations with the proxy solution.

d∗i = θrB>i + ψrZ>i + κr(xi, yi) + ξri (17)

This equation contain another STS, κr(xi, yi) ≡ λWi − ηi, which implies that ξri = ηi + ξi.
This means that we can also evaluate the completeness condition (14) at this stage, through the
spatial autocorrelation of ξri . But in all cases, the errors εri and ξri both contains ηi, so are correlated.
We propose two solutions face to this problem for the reliability of both estimated coefficients and
decompositions.

2.3.2 Using Control Functions (CF)

Because ξri is contained in Di, our element of interest is now the correlation between the observed
GIs and the unobserved biophysical variables that are not taken into account by the STS κr, this
means cov(Di, ηi). The main implication of this endogeneity problem is that price variations from
GIs are overestimated in the proxy model. The Control Function (CF) approach assumes that the
errors εri and ξri are distributed according to a bivariate normal, using the result that the expectation
of a marginal distribution conditionally to the another can be written analytically (Heckman 1979 ;
Vella 1993 ; Newey et al. 1999).

̂E(ηi | d∗i ) = ̂E(ξri | d∗i ) =
∑

j
dij ×

φ(µ̂j−1 − d̂∗i )− φ(µ̂j − d̂∗i )
Φ(µ̂j−1 − d̂∗i )− Φ(µ̂j − d̂∗i )

(18)

Gourieroux et al. (1987) and Chesher and Irish (1987) call this term the generalized residuals,
in a similar context than the previous latent variable framework with the assumption of gaussian
residuals. Controlling for endogeneity is then easily effectued by putting the conditional expectation
as an additional covariate in what is now the second step of estimation.

pi = αc + βcB>i + δcD>i + `c(xi, yi) + ρc ̂E(ξi | d∗i ) + εci (19)
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The conditional expectation is estimated by a first step ordered probit model with the dummies
communes as the instruments Zi. The coefficient ρc is the covariance between εi and ξi divided
by the variance of ξi. According to our omitted variable framework and to the fact that the two
error terms are functions of ηi, we expect this coefficient to be positive. Decomposition of price
variations with control functions: to be done.

2.3.3 Using Instrumental Variables (IV)

We also suggest to estimate the structural parameters in equation (1) by controlling omitted variable
bias and endogeneity of GIs’ designations by using an Instrumental Variable (IV) approach, that
does not necessitate the normal assumptions basing the CF approach. An instrument should be
sufficiently correlated with the endogenous variable and uncorrelated with the error terms of (1). In
our setting, recall that the system of equations (1), (15) and (16) is triangular, where the estimation
of (15) and (16) can be considered as the first sep of a Two Stage Least Squares (2SLS) approach
to IV. In (15), variables contained in the matrix Zi play the role of instruments, i.e., the variables
that verify the exclusion condition. For the reasons that are detailed above, these instruments are
the communes dummies. Because they were constituted 200 years ago, they do not affect directly
the price of a bottle and hence can be considered as valid instruments. However, several problems
arise in order to implement IV/2SLS in our particular setting. One possibility would be to use
directly a standard IV estimator on (1). In other words, (1) is estimated using IV with all exogenous
biophysical variables and the set of communes in our sample as instruments for the dummies Di.
However, proceeding in this way implies that we overlook that the ordered nature of the dummies
Di that appear in (1) so that there relative effects might not be estimated correctly.

Alternatively, we can use a 2SLS approach: the estimated d∗i from (15) with an ordered
qualitative estimator are directly plugged into (10). However, this method correspond to forbidden
regressions (Angrist and Pischke 2008, p. 191–192) as the first stage is nonlinear. To overcome
this problem, we propose to adapt the procedure described in Angrist and Pischke (2008) for
one endogenous dummy variable. This means running an intermediate linear probability step by
regressing the dummies Di on all the exogenous variables (including the STS) and the predictions
of the latent variable from the ordered qualitative models as an instrument: Di = αl + βlB>i +

`l(xi, yi) + τ ld̂∗i + εli. The statistical significance of the coefficient τ ` can be used to estimate
the relevance of the instruments in explaining the endogenous covariates. Finally, we plug the
predictions from this intermediate step D̂i in the structural equation.

pi = αv + βvB>i + `v(xi, yi) + δvD̂>i + εvi (20)

This procedure allows using conventional IV in our particular case of J endogenous dummy
variables corresponding to an ordered qualitative variable. However, its main drawback is that is
uses the nonlinearity of the first stage as an additional source of identifying information. In order
to control this potential caveat, we estimate (15) using different nonlinear estimators for ordered
dependent variables.

Decomposition of price variations in IV: to be done. nonparametric IV models (Das, 2005)
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3 Data

3.1 Sample

Our proposed methodology is applied to the most famous wineyards of Burgundy, which is a French
region. Burgundy is geographically cut in two main spatial delineations of interest. The first is
an already mentioned administrative delineation that exists at the national scale: the communes,
which are kind of municipalities. The second describes spatial units known as homogenous in terms
of geology and soils, according to a regional soil survey (Référentiel Pédologique de Bourgogne,
Chrétien, 2000). This survey is effectued by soil scientists, independently from the current research.
The left panel of Figure 1 colors the four wine regions of Burgundy, from which we keep only Côtes
de Beaune (CDB) and Côtes de Nuits (CDN). Both Hautes Côtes de Beaune and Hautes Côtes
de Nuits are other wine regions that have their own GIs and do not share the same structure than
CDB and CDN in terms of Villages (VILLs), Premiers Crus (PCRUs) and Grands Crus (GCRUs).
Morever, GIs from Hautes Côtes are younger and spatially segregated from the other, that make
them hardly comparable with the CDB and CDN.
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Santenay

Ladoix−Serrigny

Volnay

Côte de Beaune
Côte de Nuits
Haute Côte de Beaune
Haute Côte de Nuits

5 km
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Figure 1: Wine regions and communes (left panel), soil units and wineyard sales (middle panel),
spatial smoothing of the logarithm of sale prices (in deflated euro/ha, right panel)

The left panel shows the delineation of the communes (superimposed with the delination of wine
regions) from which only the names of communes with well balanced GIs appear (see Appendix A.1
for the details). Northern regions have principally the pinot noir as a wine variety to make red wines
and southern regions have principally chardonnay to make white wines. Some exceptions exist,
maybe the more typical are the communes of Pommard and Volnay which mainly produce red wines
although being in CDB. The delination of soil units is more biophysically oriented, so the spatial
polygons are much more irregular. The middle panel of Figure 1 shows that only few soil units
concentrate the essential of wineyard sales. The presence of wine production (and, consequently,
wineyard sales) is strongly explained by the geological and soil attributes and sales are principally
located at the middle of each commune on the East–West gradient. The right panel of Figure 1
displays the spatial distribution of the logarithm of per-ha prices, globally between exp(8) ≈ 3, 000
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and exp(14) ≈ 1, 200, 000 in deflated e 2008. The two wine regions are comparable in average
prices and present a core(s)/ periphery structure. CDB (at the South) presents four cores, located at
the center from the East–West gradient and regularly along the South–North gradient. CDN (at the
North) displays only one core, at the middle of the South–North gradient but shifted at the West.

3.2 Variables

The variables of our final database come from five main sources. The first concerns wineyard
sales from the Société Centrale d’Aménagement du Foncier Rural (SCAFR), the French regulatory
institution of the farmland market. This database normally contains all land sales operated between
1992 and 2008, for which the productive orientation (nature cadastrale) is wineyard. This database
contains principally the observed price for each sale, the acreages, the identifiants of plots and some
qualitative information: date of the sale, socio-demographics of seller and buyer, land tenure and
the presence/absence of building. The second database from the Institut National de l’Origine et
de la Qualité (INAO) reports the spatial delineations of GIs, which allow to know exactly the GI
of each parcel of each sale. The third set of variable comes from a Digital Elevation Model that
computes for each plot the elevation, slope and exposition. Because the resolution of this DEM
is 50 meters, we can consider these biophysical variables as perfectly observed. This is not the
case for climate and soil quality variables that come from the two last databases at more aggregated
scales: respectively the communes and the soil units.

Table 1: Frequencies and proportions of wineyard sales for each GIs within each wine region

BGOR BOUR VILL PCRU GCRU Sum

CDB 177 463 924 393 32 1989
(%) (5.49) (14.36) (28.65) (12.19) (0.99) (61.68)

CDN 124 207 739 126 40 1236
(%) (3.84) (6.42) (22.91) (3.91) (1.24) (38.32)

Sum 301 670 1663 519 72 3225
(%) (9.33) (20.78) (51.56) (16.10) (2.23) (100.00)

With a pooled sample of 3,225 wineyard plots sold, CDB and CDN contain respectively 1,989
(61.7%) and 1,236 (38.3%) observations. The frequencies of GIs are rather similar within wine
regions: the GI Village (VILL) represents the highest number of sales for both regions, followed
by Bourgogne (BOUR), Premier Cru (PCRU), Grand Ordinaire (BGOR) and finally Grand Cru
(GCRU). From the left to the right of the table, GIs are ordered from the less famous to the
most. Sales frequencies are not monotonically related to reputation, the highest numbers of sales
correspond to the intermediate GIs.

Our sample of 2,978 wineyard plots represents 1,476 sales. Note that 907 sales are about only
one plot and the sale with the highest number of parcels counts 73 parcels. All wineyard plots in one
sale have the same reported par-hectare price. From Figure 2, the natural logarithm of per-ha prices
is more variable between GIs than between wine regions. This result both implies that there exists
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Figure 2: Within wine regions price distributions for each Geographical Indication, from the less
famous (bottom) to the most (top)

strong variations of vineyard prices at small scales (within wine regions) and that GIs’ effects have
globally the same magnitudes (between wine regions). Moreover, the medians are approximatively
linear from the BGOR of CDB to the GCRU of CDN, from the bottom to the top of Figure 2. This
means that the median price of one ha of GCRU is approximatively two times higher that one
hectare (ha) of PCRU, itself two times more expensive than a VILL and so on. This Figure also
shows the presence of some potential outliers in terms of price per-hectare, conditionally to the GIs.
We report the econometric results with the outliers but we verify systematically that the results are
not too sensitive to their presence.

3.3 Summary statistics

The following Table 2 reports the usual summary statistics for continous variables contained in the
final samples. Wineyard plots from Burgundy are very small (compared with other agricultural land
uses and other wine regions in France). Average acreages correspond respectively to about .56 and
.46 acres respectively for the CDB and CDN. The acreages are more variables for the CDB with a
Standard Deviation near than three times higher.

The spatial coordinates (centered and reduced from the pooled sample) clearly show the spatial
position of the two wine regions that appears at the left panel of Figure 1. If we cut the whole region
in four regular rectangles, CDB is at the southern west (low longitudes and latitudes) and CDN is at
the northern east (high longitudes and latitudes). We compute the distances from wineyards to the
centers of communes, which group in general the service available to the population. This variable
is used as a proxy of urban influence. The two wine regions share the same proximity of their

12



Table 2: Summary statistics for continous variables, separated sample for each wine region

Côte de Beaune (N= 1,846) Côte de Nuits (N= 1,132)
Variables Mean St. Dev. Min Max Mean St. Dev. Min Max

Price (1,000 euro/ha) 252.83 296.10 1.27 3, 929.03 247.07 262.00 2.34 1, 822.79
Surface (ha) 0.22 0.41 0.001 13.37 0.14 0.14 0.001 1.14
Longitude (scaled) −0.70 0.51 −1.92 0.48 1.15 0.19 0.47 1.50
Latitude (scaled) −0.70 0.42 −1.54 0.13 1.15 0.44 0.06 2.01
Distance to Center (km) 1.19 0.57 0.08 3.67 1.00 0.51 0.07 2.90
Elevation (100 m) 2.66 0.48 2.12 4.76 2.69 0.26 2.17 3.79
Slope (degree) 4.67 4.81 0.00 23.61 3.14 3.37 0.40 19.65
Temperature (Celsus) 11.16 0.26 10.92 11.49 11.10 0.18 10.92 11.515
Precipitations (mm) 809.94 17.76 789.37 842.16 816.27 27.01 749.96 841.33
Solar Radiation (Joules) 984.93 17.86 952.00 1, 000.52 972.09 16.00 953.08 1, 003.61
Humidity (mm) 940.57 5.47 931.05 944.90 936.71 3.64 930.73 943.98
Wind (km) 30.25 2.48 27.31 33.41 30.48 2.25 28.90 35.69
Snow (cm) 26.14 7.10 17.05 39.95 31.25 6.04 22.39 39.34
Water Holding Capacity (mm) 91.08 36.91 0 153 73.32 40.51 0 188
Soil Depth (cm) 52.96 19.61 0 93 47.96 19.74 0 80
Stone Rate (permil) 13.55 14.76 0 50 23.71 16.28 0 85
Silt Rate (percent) 49.93 7.41 0 60 46.21 12.28 0 66
Sand Rate (percent) 15.04 6.43 0 33 15.41 5.59 0 40
Clay Rate (percent) 34.70 4.63 0 55 35.98 9.31 0 45

vineyards to these centers. The within distributions of all biophysical variables are rather similar
between the two wine regions. Nevretheless, we can note that elevation appears as more variable
for the CDB and that slope is higher on average. Despite a North–South difference in locations,
average temperatures do not really differ between the regions. Aggregate variables (the 12 last rows)
present smaller coefficients of variations that the others perfectly observed variables. It is particular
true for climate variables compared with elevation and slope.

In a unreported analysis, we find high correlations between the numerous biophysical variables
that are relevant to explain both GIs’ designation and wineyard prices. Hence, we operate two
Principal Component Analysis (PCA) to reduce the dimension of the covariates and to decrease
problems of multicolinearity in the econometric models. Correlated covariate are separated between
climate (rows 8–14) and soil (rows 15–20) variables that are plugged in two PCAs. We keep the
two principal axis of both. Each of them explains respectively 87 and 72 percents of the empirical
variances of the initial variables (see Appendix A.1 for the details).
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4 Results

4.1 Naive and proxy hedonic models

4.1.1 Marginal significance of variables

We first report the results from naive hedonic models that ignore the possibility of omitted biophysi-
cal variables and the endogeneity of GIs’ designations. To take into account the strong nonlinearities
in the effects of biophysical variables on prices, we use both semiparametric B-Splines4 and poly-
nomial terms. The splines fit better the data in general but the results are less easily interpretable.
As it is more usual to use polynomial terms in econometrics, we provide the results from the two
methods. We estimate six specifications for each of the three samples (pooled, CDB and CDN),
the spline orders are chosen according to a forward selection and the polynomials are limited to
the second order to keep the interpretations simple. The first two specifications only contain the
variables about NCs, only observed biophysical variables for (I) and with STS of geographical
coordinates for (II). The specifications (III) and (IV) only contain the GIs’ dummies, respectively
with and without STS. The two last specifications (V) and (VI) include both GIs and NCs, with and
without STS. The results obtained from splines models are reported in the following Table 3. The
details of the coefficients from polynomials models are reported in Table 10 of the Appendix A.3.

In Table 3, the values reported are the increases in terms of SSE that follow the introduction of
all the spline terms of each variable, indicating the marginal significances for each of them (Fox
and Weisberg, 2010). These numbers are close to the usual Fisher statistics for the joint nullity of
the spline coefficients associated to each variable (the “order” columns also represent the degrees
of freedom). Knowing that SST is 2,636 for the pooled sample, the R-squared can be computed
from the last row of the top panel: R2 = 1 − SSR/SST . They are respectively .31, .53, .52,
.65, .60 and .67 for the specification (I)–(VI). The SST for the CDB and the CDN samples are
respectively 1,766 and 871, so the R-squared ranges are .40–.67 and .47–.75 for all the specifications.
For specifications (I), elevation appears as the most important biophysical variable, even if for
the CDN sample WET is equally strong. The effects of slope is strong for the pooled sample but
not for the others. Looking at the specification (II), the inclusion of STS sharply decreases the
coefficients associated to biophysical variables and increase the R-squared. STS are individually
highly significants such that specifications (II) fit the data better than specifications (III) that include
only GIs. However, GIs have strong effects too where included alone in (III). For the three samples,
the SSE just stemming from GIs are close to the SSR which means that the partial R-squared
for the all four dummies is about 1/2. Including STS simultaneously with GIs – specification
(IV) – implies a division by two of the marginal effects of GIs. This results still holds for the
specifications with both biophysical variables and GIs: between (V) and (VI). By comparing the
individual significances of biophysical variables (elevation in particular) between (I) and (V), we see
that including GIs strongly decrease their effects. The reverse is also true, albeit at a lesser extend
when we include observed biophysical variables in addition to GIs: by comparing specifications
(III) and (V). The same evidences are found on the more classical polynomial regressions of order

4http://cran.r-project.org/web/packages/crs/vignettes/spline_primer.pdf (last accessed: Septem-
ber 8, 2013).
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two, reported in Table 10 of the Appendix A.3.

4.1.2 Marginal effects

The marginal significances of GIs as a whole are highly variable according to the different spec-
ifications (with and without biophysical variables and with and without STS) but some features
remain relatively robust between samples. Because the effects of GIs are modeled through dummies
variables, the following Table 4 reports the marginal effects of GIs’ dummies5 and the standard
errors estimated by the delta method. For spline functions, the marginal effects are displayed by
plotting conditional predictions with all other variables at their samples means (Fox and Hong,
2009). These effect plots are reported in Figure 6, Appendix A.2 for each of the three samples.

Table 4: GIs’ marginal effects and standard errors from spline models, GI ref.: Grand Ordinaire

Bourgogne Village Premier Cru Grand Cru
effect s.e. effect s.e. effect s.e. effect s.e.

POOL (III) 92.80 24.00 722.60 100.30 1441.80 197.90 4310.00 695.60
POOL (IV) 54.90 21.70 605.30 104.90 829.70 157.20 3030.70 591.20
POOL (V) 68.30 21.90 685.80 101.10 1273.10 198.20 4747.70 817.10
POOL (VI) 48.50 21.60 526.90 94.90 726.10 141.20 2535.80 517.80

CDB (III) 120.50 38.20 881.30 167.10 1595.60 297.10 4083.50 1124.30
CDB (IV) 87.30 34.60 772.70 481.70 1049.80 1238.10 3496.40 3256.00
CDB (V) 77.40 32.50 810.60 164.90 1137.00 244.70 4447.80 1317.70
CDB (VI) 102.30 57.10 813.20 1079.50 1103.20 4784.40 3565.10 8959.00

CDN (III) 64.20 29.30 579.80 117.90 1496.30 303.20 3955.10 769.70
CDN (IV) 14.80 40.40 355.70 196.50 510.30 286.90 1234.30 748.00
CDN (V) 58.60 33.70 605.00 170.30 1088.40 321.10 3030.10 798.30
CDN (VI) 29.10 35.10 365.40 153.20 543.50 241.30 1347.20 573.60

The marginal effects of GIs on wineyard prices are high. Relatively to the GI Grand Ordinaire,
a wineyard designated Bourgogne is 92.8% (σ̂ = 24) more expensive according to specification (III)
on the pooled sample. This number falls to 48.5% (σ̂ = 21.6) when omitted biophysical variables
are taken into account through the proxy STS solution. When evaluated at the average price of a
Grand Ordinaire wineyard (e 51,968), these premiums correspond respectively to e 48,227 and
e 25,205. Recall that Cross et al. (2011) found $7,000 for the biggest premium in Oregon. For
the more famous GIs, the premiums are incommensurate: respectively e 273,823, e 377,345 and
e 1,317,825 for Village, Premier Cru and Grand Cru according to the conservative specification
(VI) on the pooled sample. These magnitudes are similar within each wine regions CDB and CDN,
even if certain differences appear. For such high numbers, the associated uncertainty is high as the
standard errors are quite important but the premiums are often significant two-by-two, i.e., between
adjacent GIs on the reputation scale. Including STS implies an important decrease of the premiums
of the Premier Cru, in particular relatively to the premiums of Village (it is clear for the pooled

5We use semi-log models, the marginal effects of dummies are 100× [exp(δ − σδ/2)− 1], see Kennedy (1981).
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sample between specifications (III) and (IV), and (V) and (VI) but also for the others samples).
Note that the specifications with STS on the CDB sample – (IV) and (VI) – present high standard
errors for the effects of famous the GIs (Village, Premier Cru and Grand Cru).

From Figure 6 of the Appendix A.2 displays the marginal effects of elevation and slope for
the pooled sample, the CDB and CDN. They are reported with and without controlling for GIs,
specifications (I) and (V). Between the two specifications, the magnitudes of the effects of this
biophysical variables decrease: the curves are more flattened in (V). In general, the effects of
elevation are shapped as an inverted U and the effects of slope are concave. For the pooled sample,
the elevation with the higher wine prices is of about 240m, For the CDB and the CDN the values are
about 280 and 260. The slope effects are highly increasing at low values and become non significant
from 10 degrees. Globally the effects from the pooled sample are closest to those from CDB, which
can be understood by the higher number of observations. The hedonic marginal prices of these
biophysical attributes are the derivative of the effect curves. Elevation and slope have positive or
negative values, depending at the level of evaluation.

4.1.3 Spatial autocorrelation

As we argue in subsection 2.1, one way to evaluate the relevance of the proxy solution (equation 14)
is to test for spatial autocorrelation of the errors from the hedonic equation. The following Figure 3
displays the Moran’s plots for the specifications (I)–(VI) on the pooled sample, for the North-West
to the South-East. These plots present on the x-axis the estimated errors for each sale i and on
the y-axis the average errors of these neighbors, weighted according to their distances to i. The
spatial weight matrix is a gaussian spatial kernel with a bandwith chosen in order to have at least
one neighbor for each observation.

Figure 3: Moran plots for spatial autocorrelation of residuals, pooled sample
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This Figure clearly shows the interest of STS to control for the spatial autocorrelation of the
residuals, and this is true for each specification. Not any spatial effect stay in the residuals after
controlling by STS. This involves that the proxy STS solution is sufficient to take into account any
omitted spatial biophysical variable. More formally, a bootstrap inference of the Moran’s I statistics
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indicate that we reject the spatial independance of errors for the models without STS but we cannot
reject it for the models with STS (95% for (II) and (VI), 90% for (IV)). To investigate deeper the
spatial structure of the residuals and the proposed solution throught STS, the following Figure 4
displays three STS estimated on the residuals from the specifications (I), (III) and (V) at the top and
the three estimated STS ̂̀r(xi, yi) for the specifications (II), (IV) and (VI) at the bottom.

Figure 4: Maps of estimated residuals from models without STS – (I), (III) and (V), top panel – and
the estimated STSs when there are in models: (II), (IV) and (VI), bottom panel
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(I) and (II) (III) and (IV) (V) and (VI)

Residuals on the three map at the top look closely to the spatial distribution of price as it appears
in Figure 1 but some differences exist in details. Errors are more important in the CDN for the
specification (I) with only NCs and the errors are more important in the CDB in the specification
(III) with only GIs. In specification (V) the errors are equally variable between the two wine regions.
The three STS at the bottom globally displays the same spatial patterns, even if some differences
also appears in details. The STS are less marked from the left to the right, according to what Table 3
presents. CDN presents a high East-West gradient in the specification (II), which decreases (but
stays) in the specifications (IV) and (VI).
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4.1.4 Decompositions

If we turn to the wineyard price decompositions between the GIs (SSD) and the NCs (SSB) for
the specifications (V) and (VI) that contain both GIs and NCs, contrasting evidences appear. They
are summarized in the following Table 5. For both specifications, GIs appear as a more important
source of wineyard price variation than NCs. However, taking into account the possibility of
spatially omitted biophysical variables for the pooled sample implies more than a doubling of the
explained part from NCs, from 7.62% to 16.56% between (V) and (VI). The naive hedonic model
(and, therefore, previous analysis from other papers) underestimates the share of price variations
that comes from NCs and overestimate the variations from GIs. Both with and without taking into
account the possibility of omitted biophysical variables, CDB has smaller proportions of explained
variations due to NCs than CDN, an interesting result to describe the differences between the two
wine regions. It is also interesting to note that the interaction effects are increasing when adding a
STS to the regression functions. Hence, controlling for omitted variables is done at the cost of a
loss of precision in the decompositions.

Table 5: Decompositions of price variations according to naive models (V) and proxy solution (VI)

Sample Spec. SSB SSD SSR Ω

POOL (V) 7.62 50.97 40.42 0.99
POOL (VI) 16.56 37.63 32.95 12.86
CDB (V) 11.20 47.08 37.61 4.11
CDB (VI) 15.75 42.20 33.11 8.94
CDN (V) 15.07 49.14 31.50 4.29
CDN (VI) 24.33 31.51 25.06 19.10

4.2 Ordered models of GIs’ designations

In this section, we report the results from the first step of ordered qualitative models on GIs’
designations. Because these models of designation have an interest of they own, we estimate
four specifications both with logistic and probit errors for a total of eight estimations. All the
specifications contain the perfectly observed biophysical variables (elevation, slope and exposition),
what distinguishes the four specifications is the following:

• (i) : only commune and soil unit dummy variables in addition

• (ii) : only climate and soil biophysical variables in addition

• (iii) : (i) with STS

• (iv) : (ii) with STS

We cannot include simultaneously the biophysical variables and the dummies because of perfect
colinearity (recall that continous biohysical variables come from aggregate sources at the commune
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and soil units scales) so these specifications are complementary. Because the communes dummies
are our instruments, we only use the specifications (i) and (iii) with the probit errors as the first
step in our CF and IV approaches. The other estimations are displayed to show that the processes
underlying GI’s designations are closely related to the effects of the previous hedonic models. The
effects of biophysical variables on GIs’ designation probabilities are reported in Figure 7, Appendix
A.2. (according to the methodology of Fox and Hong 2009). We also see important nonlinearities
of the effects of biophysical variables. For the elevation effect, the maximum probabilities for the
most famous GIs (Grand Cru, premier Cru and Village) are about 250m for the pooled sample.
This is the same value that we found for the hedonic model, making explicit the nesting of NCs
and GIs. The average probabilities at these elevations are about 70% and 20% for respectively the
Village and the Premier Cru. The maximum probabilities for the less famous GIs are at the top
of the distribution: above 400m. Low elevations also present high probabilities of designations
both for Grand Ordinaire and Bourgogne. For the slope effects, the maximum probabilities for
famous GIs are about 8–9 deggres if we neglect the corner effects for the high values of slope (only
15 vineyard plots have a slope greater than 20: .05% of the sample). GIs with low reputation are
clearly located on small slopes.

For CDB, the effects of elevation and slope are really close to what we found on the pooled
sample. The maximum probabilities for famous GIs are for elevations of about 275m and these
are more marked than for the pooled sample.For CDN, the results are well contrasted to the other
samples. The elevation is globally, positively related with the probability of a famous GI. The slope
effect is U shapped and the other biophysical variables have they own (very significant) effects. Raw
coefficients from polynomial estimations (instead of splines) are available in the Table 11 at the
Appendix A.3. To evaluate the capacity of these ordered models to represent GIs’ designation, the
following Table 6 reports both the frequencies between observed and predicted GIs (top panel) and
the percent of good predictions in terms of GIs (bottom panel). Predictions from ordered qualitative
models are computed by maximum probabilities.

Table 6: Frequencies between observed and predicted GIs (rows 1–5) plus percent of good predic-
tions (rows 6–8)

Pooled Sample Separated Samples
OBS (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

BGOR 285 168 160 197 196 246 178 212 214
BOUR 603 528 463 595 500 501 511 593 543
VILL 1539 1979 2087 1733 1868 1854 1952 1703 1763
PCRU 483 303 268 440 413 376 336 439 441
GCRU 68 0 0 13 1 1 1 31 17

ALL 100 63.9 57.69 70.72 64.07 68.57 62.46 72.77 69.11
CDB 100 66.58 54.66 70.8 61.7 69.23 57.96 72.21 66.14
CBN 100 59.54 62.63 70.58 67.93 67.49 69.79 73.67 73.94

In general, ordered models overestimate the number of the intermediate GIs (Village) and
underestimate the GIs at the extremes. Note that the most famous GI (Grand Cru) is only well
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predicted when the ordered models are estimated on separated samples. The differences are
decreasing when we include STS, between specifications (i)–(ii) and (iii)–(iv). The ordered models
perform well in predicting the GIs at the plot scale: more than 70% of correct predictions for the
best specification (iii). It is important because with five items for the ordered endogenous variable,
a random allocation produces 20% of correct predictions. For all samples, the specification with
splines and discrete variables (iii) perform the best, so is used in the CF and IV. These last results
clearly show the relevance of our instrument communes to explain the GIs: the first of the condition
to be a good instrument. It appears by comparing the specifications (iii) and (iv).

4.3 Control Functions

The raw results from the control function approach are available in Table 12 of the Appendix A.3.
The specification (VII) is without STS and the (VIII) with STS so the generalized residuals used as
CFs are respectively from ordered models (i) and (iii). These results have to be compared to those
from specifications (V) and (VI) that do not take into account the endogeneity of GIs (the raw results
from (VI) are reported in the Table 10). The R-squared are comparable with and without CF, as the
shapes of effects of biophysical variables (so we do not report them). As expected, the coefficients
associated to the CFs at the bottom of the table are positive and highly significant (except for the
specification (VII) on the sample CDN, the last column). Biggest induced changes are relative
to the effects of GIs. Just by including CF, the coefficient associated to Bourgogne becomes not
significant, the coefficient of Premier Cru a little under the coefficient of Village and the coefficient
of Grand Cru diminishes from 3.3 in specification (VI) to 2.1 with in CF of specification (VIII).

The following table reports the marginal effects of GIs, with their associated Standard Errors.
This results have to be compared with those of Table 4 to see the effects of CF.

Table 7: GIs’ marginal effects and standard errors from control function models, ref.: Grand
Ordinaire

Bourgogne Village Premier Cru Grand Cru
effect s.e. effect s.e. effect s.e. effect s.e.

POOL (VII) 33.19 21.26 372.89 106.63 477.91 182.52 1068.07 484.51
POOL (VIII) 26.90 20.90 302.33 93.05 289.09 125.92 679.36 332.31
CDB (VII) 54.51 35.10 519.64 192.13 619.30 302.60 1449.98 924.95
CDB (VIII) 45.82 34.20 403.03 158.28 390.01 211.93 1126.64 761.63
CDN (VII) 3.27 24.06 124.40 75.54 145.67 119.94 328.01 245.06
CDN (VIII) 10.93 26.64 213.96 114.06 223.03 168.34 435.46 330.62

There are strong decreases of the marginal effects of GIs. The Bourgogne is 28.8% more
expensive than the reference modality Grand Ordinaire (instead of 48.5), the premium is around
e 14,000 instead of e 25,200. By comparing marginal effect of GIs betwen specifications (VIII)
and (VI) for the more famous GIs, we finds premiums of respectively e 157,099.3, e 150,239.5 and
e 353,070.6 instead of e 273,823, e 377,345 and e 1,317,825. The decreases of GIs’ premiums
are from − 40% to − 75%, the most famous GIs are relatively more impacted.
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4.4 Instrumental Variables

Table 8: R squared and Student’s t for intermediate IV

BGOR BOUR VILL PCRU GCRU

POOLED (IX) 0.381 0.229 0.114 0.307 0.186
-22.092 -10.195 2.611 15.900 15.060

POOLED (X) 0.429 0.298 0.197 0.358 0.234
-15.973 -10.289 1.901 13.909 12.354

CDB (IX) 0.398 0.295 0.096 0.374 0.196
-16.109 -8.974 1.665 13.275 10.444

CDB (X) 0.449 0.377 0.275 0.541 0.367
-16.756 -6.790 1.218 13.010 9.012

CDN (IX) 0.506 0.244 0.230 0.225 0.251
-13.297 -3.701 0.773 6.764 11.420

CDN (X) 0.577 0.341 0.358 0.311 0.375
-10.374 -4.941 0.889 6.899 9.469

Table 9: GIs’ Premiums from Instrumental Variables

Bourgogne Village Premier Cru Grand Cru
effect s.e. effect s.e. effect s.e. effect s.e.

POOL (IX) 773.26 449.17 1404.86 583.90 4661.77 2047.65 11440.03 8496.62
POOL (X) 193.39 137.00 989.73 427.10 1792.16 951.11 4055.66 2388.12
CDB (IX) 43.76 145.29 962.57 764.37 1749.07 1470.26 2039.24 2380.22
CDB (X) -48.20 61.42 216.87 256.48 47.43 156.57 13232.04 15501.95

CDN (IX) 30.45 111.85 103.99 143.94 165.98 349.12 8530.99 8468.65
CDN (X) -75.77 18.85 -35.73 42.23 -95.73 5.34 86.15 186.51

5 Conclusion

What the Imbens 2000, Zhao et al 2013 bring in the presence of omitted variables? When the
treatment is based on unobservables they are not good.

Even based on the classical hedonic theory, our methodology makes three main distinctions
that are necessary for our question:

• Use semiparametric splines to take into account nonlinear effect of biophysical variables on
wineyard prices.
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• Use Spatial Trend Surface to control for unobservable biophysical variables and error-in-
variables.

• Use Control Functions and Instrumental Variables to control for the endogeneity of Geograph-
ical Indications, using the historical determinants of the designation choices.
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A Appendix

A.1 Variable recoding

We recode the communes by only keeping a dummy for communes with strictly more than three GIs (on
five possible). This is done to keep the variables well distributed with each GI (the qualitative endogenous
variable of the first steps). From the 35 initial, 16 communes are finally selected to have their proper fixed
effects, see their names in Figure 1. The same is done for soil units. From the 22 initial soil units, seven are
finally selected to have strictly more than three GIs within. These two spatial delineations are also used to
match some exogenous variables. Communes are used to obtain the average climate 1970–2000 and soil units
are used to obtain land quality variables.

Figure 5 displays the initial climate and soil variables in the spaces of the principal axis. It allows us to
interpret these main axis in terms of the initial variables and facilitates the interpretations of the results.
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Figure 5: Principal Component Analysis for initial climate and soil variables

For climate variables (left panel), high values for the first axis correspond to high values for cumulative
precipitations (PREC), quantity of snow (NEIGE), and small values of solar radiation (RAYAT), humidity (HREL)
and wind (VENT). We call this axis a proxy for a wet climate. The second axis is clearly a proxy of a heat
climate: high values mean high temperatures (TMOY, TMAX and TMIN). For soil variables, the first axis represent
the opposite of a classical view of fertility with high values meaning the presence of stones (TEG), and low
values the presence of high water holding capacity (RUE) and silt (TLIM). We do not take the opposite of
this axis to be included in the regression because for wine production, unfertile soils are in general prefered.
We call this variable an index of rough soils. For the second axis from soil variables, high values means
high values in terms of clay (TARG), thickness (EPAIS), water holding capacity, and sand (TSAB). So, it seems
natural to call this dimension a proxy for soil depth.
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A.2 Spline effects on prices

Figure 6: Marginal B-spline effects of elevation (left) and slope (right) from pooled sample, Cote de
Beaune and Cote de Nuits.
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Figure 7: Predicted probabilities of GIs from pooled sample, logistic spline model with continous
variables
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Table 12: Regression results from control function models of wineyard prices, with polynomial

Pooled Sample Cote de Beaune Cote de Nuits

(VII) (VIII) (VII) (VIII) (VII) (VIII)

Elevation 2.537∗∗ 1.329 6.708∗∗∗ 1.806 −4.393 −4.012
(1.277) (1.862) (1.984) (2.375) (3.229) (5.476)

Elevation2 −0.485∗∗ −0.236 −1.100∗∗∗ −0.347 0.619 0.583
(0.214) (0.303) (0.327) (0.388) (0.559) (0.884)

Slope 0.117∗∗∗ 0.111∗∗∗ 0.055 0.105∗∗ 0.153∗∗∗ 0.036
(0.033) (0.030) (0.040) (0.042) (0.051) (0.055)

Slope2 −0.006∗∗∗ −0.006∗∗∗ −0.004∗∗ −0.006∗∗∗ −0.007∗∗ −0.003
(0.002) (0.002) (0.002) (0.002) (0.003) (0.004)

North −0.218 −0.343∗∗ −0.359∗ −0.359∗ 0.002 −0.081
(0.143) (0.145) (0.196) (0.200) (0.201) (0.179)

South −0.115∗∗ −0.087∗ −0.100 −0.020 −0.166∗ −0.162∗
(0.051) (0.049) (0.064) (0.062) (0.090) (0.088)

West −0.161 −0.100 −0.225∗ −0.112 0.572∗ 0.209
(0.119) (0.118) (0.132) (0.133) (0.323) (0.322)

Wet −0.074∗∗∗ −0.011 −0.009 −0.342∗∗∗ 0.185∗∗∗ −0.066
(0.016) (0.021) (0.058) (0.109) (0.044) (0.053)

Wet2 −0.100∗∗∗ −0.082∗∗∗ 0.074 −0.496∗∗∗ −0.096∗∗∗ −0.049∗∗
(0.011) (0.017) (0.083) (0.146) (0.014) (0.023)

Heat −0.026 0.070∗ 0.208∗ −0.473∗∗ 0.245∗∗∗ −0.013
(0.025) (0.041) (0.120) (0.215) (0.061) (0.071)

Heat2 0.002 −0.119∗∗∗ 0.042∗∗ −0.234∗∗∗ −0.225∗∗∗ 0.002
(0.013) (0.023) (0.020) (0.038) (0.048) (0.064)

Rough −0.030 0.034 −0.139∗∗∗ −0.014 0.215∗∗∗ 0.108∗∗

(0.020) (0.023) (0.024) (0.030) (0.049) (0.054)
Rough2 −0.021 −0.027∗∗ −0.085∗∗∗ −0.044∗ −0.042∗∗ −0.009

(0.015) (0.013) (0.023) (0.025) (0.018) (0.018)
Depth 0.133∗∗∗ 0.052 0.181∗∗ 0.114 0.033 −0.045

(0.034) (0.033) (0.082) (0.092) (0.042) (0.046)
Depth2 0.033∗∗∗ 0.035∗∗∗ 0.071∗∗∗ 0.052∗∗ −0.006 0.002

(0.009) (0.009) (0.022) (0.022) (0.013) (0.013)
AOCfBOUR 0.287∗ 0.253 0.435∗ 0.377 0.032 0.172

(0.160) (0.166) (0.227) (0.235) (0.233) (0.228)
AOCfVILL 1.554∗∗∗ 1.424∗∗∗ 1.824∗∗∗ 1.615∗∗∗ 0.808∗∗ 1.277∗∗∗

(0.225) (0.235) (0.310) (0.315) (0.337) (0.342)
AOCfPCRU 1.754∗∗∗ 1.416∗∗∗ 1.973∗∗∗ 1.589∗∗∗ 0.899∗ 1.356∗∗∗

(0.316) (0.326) (0.421) (0.433) (0.488) (0.495)
AOCfGCRU 2.458∗∗∗ 2.128∗∗∗ 2.741∗∗∗ 2.507∗∗∗ 1.454∗∗ 1.911∗∗∗

(0.415) (0.433) (0.597) (0.621) (0.573) (0.586)
POC.R 0.312∗∗∗

(0.083)
POH.R 0.290∗∗∗

(0.085)
PSH.R 0.252∗∗ 0.131

(0.112) (0.117)
PSC.R 0.252∗∗ 0.465∗∗∗

(0.104) (0.114)

Observations 1,475 1,474 938 938 536 536
R2 0.569 0.640 0.577 0.638 0.651 0.716
Adjusted R2 0.563 0.631 0.567 0.624 0.638 0.696

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors (sandwich), specifications (VIII) for each sample contain Spatial Trend Surfaces of geographical coordinates.
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Table 13: Regression results from IV

Pooled Sample Cote de Beaune Cote de Nuits

(IX) (X) (IX) (X) (IX) (X)

Elevation −1.969 −2.568 3.960 −3.096 −5.170 1.139
(1.684) (1.776) (2.463) (2.725) (3.388) (6.062)

Elevation2 0.315 0.392 −0.622 0.414 0.791 −0.234
(0.286) (0.291) (0.415) (0.453) (0.581) (0.962)

Slope 0.038 0.073∗ −0.003 0.130∗∗ 0.100 0.215∗∗

(0.042) (0.039) (0.050) (0.053) (0.102) (0.085)
Slope2 −0.002 −0.004∗ −0.001 −0.007∗∗∗ −0.005 −0.014∗∗∗

(0.002) (0.002) (0.003) (0.003) (0.005) (0.005)
North 0.313 0.088 0.068 −0.234 −0.121 −0.329

(0.194) (0.179) (0.248) (0.250) (0.274) (0.245)
South −0.176∗∗∗ −0.074 −0.040 0.132∗ −0.208∗ −0.215∗∗

(0.067) (0.060) (0.085) (0.080) (0.120) (0.105)
West −0.064 0.025 −0.106 0.035 0.589 −0.184

(0.166) (0.147) (0.173) (0.164) (0.372) (0.399)
Wet −0.037∗ −0.019 −0.066 −0.662∗∗∗ 0.281∗∗∗ 0.033

(0.021) (0.027) (0.071) (0.165) (0.088) (0.075)
Wet2 −0.101∗∗∗ −0.060∗∗∗ 0.034 −0.802∗∗∗ −0.094∗∗∗ −0.162∗∗∗

(0.015) (0.023) (0.098) (0.214) (0.022) (0.038)
Heat −0.002 0.122∗∗ 0.192 −0.911∗∗∗ 0.345∗∗∗ −0.100

(0.032) (0.055) (0.144) (0.320) (0.079) (0.103)
Heat2 −0.021 −0.102∗∗∗ 0.011 −0.271∗∗∗ −0.252∗∗∗ −0.172∗∗

(0.017) (0.026) (0.025) (0.057) (0.082) (0.082)
Rough 0.002 −0.003 −0.195∗∗∗ 0.001 0.226∗∗ 0.168∗

(0.028) (0.030) (0.036) (0.043) (0.095) (0.095)
Rough2 −0.014 −0.020 −0.098∗∗∗ −0.057∗ −0.029 −0.018

(0.020) (0.016) (0.029) (0.030) (0.027) (0.023)
Depth 0.098∗∗ 0.048 0.186∗ 0.223∗ −0.031 −0.007

(0.044) (0.042) (0.101) (0.114) (0.062) (0.060)
Depth2 0.027 0.040∗∗∗ 0.114∗∗∗ 0.079∗∗∗ −0.010 0.005

(0.017) (0.011) (0.044) (0.027) (0.019) (0.018)
IV.BOUR 2.167∗∗∗ 1.076∗∗ 0.363 −0.658 0.266 −1.417∗

(0.514) (0.467) (1.011) (1.186) (0.857) (0.778)
IV.VILL 2.711∗∗∗ 2.389∗∗∗ 2.363∗∗∗ 1.153 0.713 −0.442

(0.388) (0.392) (0.719) (0.809) (0.706) (0.657)
IV.PCRU 3.863∗∗∗ 2.940∗∗∗ 2.917∗∗∗ 0.388 0.978 −3.153∗∗

(0.430) (0.503) (0.795) (1.062) (1.313) (1.249)
IV.GCRU 4.748∗∗∗ 3.727∗∗∗ 3.063∗∗∗ 4.893∗∗∗ 4.458∗∗∗ 0.621

(0.736) (0.575) (1.113) (1.163) (0.981) (1.002)

Observations 1,441 1,441 911 911 530 530
R2 0.269 0.452 0.332 0.463 0.440 0.616
Adjusted R2 0.260 0.438 0.318 0.442 0.419 0.590

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
(1), (4) and (7) for continous biophysical variables. Other columns for fixed effects, spatial functions for (3), (6) and (9)
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