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Abstract 

We consider different models that assess eco-efficiency with production frontier estimation when 

desirable outputs and undesirable outputs are considered. These models are confronted to livestock 

farm data (French meat sheep farms) and greenhouse gas (GHG) emissions, to discuss their suitability in 

eco-efficiency measurement. Our results show that under certain conditions the existing models, except 

for the by-production one, converge to the same results as when undesirable outputs are treated as 

inputs in the production frontier. The results also reveal that the by-production model augmented with 

dependence constraints offer some promising opportunities. 

Keywords: eco-efficiency; weak G-disposability; multiple frontier technology; GHG emissions; meat 

sheep farming. 
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EMPIRICAL COMPARISON OF POLLUTION GENERATING TECHNOLOGIES IN NONPARAMETRIC 
MODELLING: 

THE CASE OF GREENHOUSE GAS EMISSIONS IN FRENCH MEAT SHEEP FARMING 

 

1. Introduction 

Since the pioneering work of Pittman (1983) to account for undesirable outputs (or bad outputs, or 

unwanted outputs, or detrimental outputs, or pollutants, or residuals) in production technology 

modelling, many models have been developed in this area for the case of nonparametric analysis. In 

general, pollutants are treated as an extra input that is added to the technology (Hailu and Veeman, 

2001; Hailu, 2003; Mahlberg et al., 2011) or included as an output under the weak disposability and the 

null-jointness assumptions (Färe et al., 1989; Chung et al., 1997; Färe et al., 2005). These two approaches 

largely used for empirical applications (Zhou et al., 2008) have been criticized in the literature for their 

inadequacy to properly model pollution generating technologies (Coelli et al., 2007; Podinovski and 

Kuosmanen, 2011; Murty et al., 2012; Chen, 2014). However, in this debate some recent developments 

have emerged to circumvent the drawbacks associated to the previous models: first, models linked to 

the materials balance principles (Hampf and Rødseth, 2014), and second, models relying on the 

estimation of separate sub-technologies (Førsund, 2009; Murty et al., 2012; Sueyoshi and Goto, 2012; 

Dakpo, 2014). This latter formulation assumes that a production system cannot be represented by a 

single equation and uses multiple independent frontier representations1. Giving this abundant literature, 

there has been to date no empirical discussion on these models that can give more insights on their 

convergence or divergence.  

The objective of this paper is then to carry on a systematic comparison of the aforementioned methods 

and discuss their suitability to real data in agriculture, with the specific case of livestock farms. The 

application to the livestock sector is relevant for two reasons. First, the complex interactions between 

agriculture and the environment can make difficult the choice of a method. Second, the last decade saw 

a growing attention at the international scale of the role played by livestock farming in the global 

greenhouse gas (GHG) emissions. Given these two issues and a projected increase in future demand of 

animal products, this sector is a suitable candidate to investigate the challenge of eco-efficiency 

computations. Besides, according to Hoang and Alauddin (2012), ‘for the sake of farmers’, sustainability 

must become an important objective since the tensions on the environment might affect the ecosystem 

                                                           
1
 One sub-technology is related to the production of good outputs and the other one for the generation of residuals. 
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which can no longer sustain the agricultural activities. In this paper, we focus on meat sheep breeding 

systems located in French grassland areas. Actually, the low farm profitability in this sector – due to high 

competition, cost increase, low public support – and the sector’s key role in the viability of rural areas - 

through for instance the maintenance of rural landscapes – imply the double challenge of socio-

economic and environmental performance. The eco-efficiency computation, based on the nonparametric 

Data Envelopment Analysis (DEA) methodology, aims at finding the maximal attainable ratio of a good 

output (here meat production) on a bad output (here an aggregation of the three main GHG emissions). 

Following Hampf and Rødseth (2014) we also propose a decomposition of performance into different 

potential sources of improvement given different assumptions on the flexibility available to producers in 

their decision making. 

The paper is organized as follows. In Section 2 we briefly explain the main assumptions, the basis and the 

significant features of each model. Within this section we also present a quick review of some 

applications in agriculture. Section 3 describes the data used and the empirical results obtained. Section 

4 discusses the appropriateness of each approach to the farm data used and points out the challenges 

that still remain. Section 5 concludes. 

2. Pollution generating technologies modelling: theoretical basis 

We begin by describing the environmental production technology which is represented by the set of 

good and bad outputs (𝑦, 𝑏) that can be produced by the inputs 𝑥: 

 

Ψ𝑏𝑎𝑑 = [(𝑥, 𝑦, 𝑏)| 𝑥 ∈ ℝ+
𝐾 , 𝑥 ≥ 0, can produce 𝑦 ∈ ℝ+

𝑄
, 𝑦 ≥ 0 and 𝑏

∈ ℝ+
𝑅 , 𝑏 ≥ 0] (1) . 

We shall also assume the following classic postulates: no free lunch, non-emptiness, closeness, 

boundness, convexity, free (strong) disposability of inputs and good outputs2 and variable returns to 

scale (VRS). One can refer to Chambers (1988) and Färe and Grosskopf (2004) for more details regarding 

the standard axioms of production theory. Given this framework pollution has been modelled in 

                                                           
2
 Good outputs are freely disposable if 𝑦 ∈ Ψ𝑏𝑎𝑑(𝑥, 𝑦, 𝑏) and 𝑦′ ≤ 𝑦 imply 𝑦′ ∈ Ψ𝑏𝑎𝑑(𝑥, 𝑦, 𝑏); inputs are freely disposable if 

𝑥 ∈ Ψ𝑏𝑎𝑑(𝑥, 𝑦, 𝑏) and 𝑥′ ≥ 𝑥 imply 𝑥′ ∈ Ψ𝑏𝑎𝑑(𝑥, 𝑦, 𝑏). 
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different ways in the literature. For our particular case study, we consider one good output and one 

undesirable output3. 

2.1. Inclusion of undesirable outputs in the production technology: literature review 

Considering that pollution generates social costs, and that an input orientation is straightforwardly 

interpreted in terms of costs savings (minimization), some authors (e.g. Dyckhoff and Allen, 2001; Prior, 

2006) recommend to introduce unwanted outputs as extra inputs and to assume their free disposability. 

These authors argue that emissions of environmentally detrimental outputs can be viewed as the usage 

of the environment’s capacity for their disposal. Hence, considering them as inputs is likely a good way 

to account for the consumption of natural resources. Under this assumption, the technology can be 

represented as (𝑁 being the number of Decision Making Units (DMUs)): 

 

Ψ𝑏𝑎𝑑
𝑖𝑛𝑝𝑢𝑡𝑠

= [(𝑥, 𝑦, 𝑏) ∈ ℝ+
𝐾+1+1| 𝑦 ≤ ∑ 𝜆𝑖𝑌𝑖

𝑁

𝑖=1

;  𝑏 ≥ ∑ 𝜆𝑖𝐵𝑖

𝑁

𝑖=1

 ; 

𝑥 ≥ ∑ 𝜆𝑖𝑋𝑖

𝑁

𝑖=1

;   ∑ 𝜆𝑖

𝑖

= 1 and 𝜆𝑖 ≥ 0; 𝑖 = 1, … , 𝑁] 

(2) . 

This approach has been criticized in the literature because it violates the physical laws of 

thermodynamics (Färe and Grosskopf, 2003). 

Another modelling strategy considers residuals as extra outputs but impose the weak disposability 

assumption (WDA) and also the null-jointness of both types of outputs (good and bad) (Färe et al., 1989; 

Chung et al., 1997; Färe et al., 2007). The WDA can be summarized as follows 

 (𝑦, 𝑏) ∈ Ψ𝑏𝑎𝑑 , 0 ≤  𝜃 ≤ 1 ⟹ (𝜃𝑦, 𝜃𝑏) ∈ Ψ𝑏𝑎𝑑 (3) . 

And the null-jointness property is represented by 

                                                           
3
 All the models presented in this paper can be easily extended to multiple good and bad outputs. 
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 (𝑦, 𝑏) ∈ Ψ and 𝑏 = 0 then 𝑦 = 0 (4) . 

The WDA implies that it is not costless to reduce bad outputs. In fact, if one wishes to reduce undesirable 

outputs, good outputs must also be reduced for a given level of inputs. This implies that resources must 

be diverted to abatement activities in order to mitigate pollution level. Under this assumption the 

production technology is defined as 

 

Ψ𝑏𝑎𝑑
𝑤𝑒𝑎𝑘 = [(𝑥, 𝑦, 𝑏) ∈ ℝ+

𝐾+1+1| 𝑦 ≤ 𝜃 ∑ 𝜆𝑖𝑌𝑖

𝑁

𝑖=1

;  𝑏 = 𝜃 ∑ 𝜆𝑖𝐵𝑖

𝑁

𝑖=1

 ; 

𝑥 ≥ ∑ 𝜆𝑖𝑋𝑖

𝑁

𝑖=1

;  ∑ 𝜆𝑖

𝑖

= 1 and 𝜆𝑖 ≥ 0; 𝑖 = 1, … , 𝑁 ; 0 ≤ 𝜃 ≤ 1] 

(5) . 

As formulated in (5) the WDA assumes a common proportional reduction of desirable and undesirable 

outputs. The model thus considers that all DMUs share the same uniform abatement effort θ. Yet as 

pointed out by Kuosmanen (2005) and Kuosmanen and Podinovski (2009), policies should be targeted to 

abatement activities where the abatement costs are lowest. The authors therefore proposed an 

extension of the traditional WDA modelling by assuming a specific abatement effort for each producer 

(firm-specific abatement factor). The new technology proposed is similar to the one in problem (5) 

except that 𝜃 is replaced by 𝜃𝑖. Despite the interesting feature of this model, some recent studies have 

cast a doubt on the relevance of the WDA. For instance Murty et al. (2012), using a transformation 

function to estimate the different trade-offs, showed some inconsistencies linked to this assumption. 

Chen (2014) also revealed some empirical drawbacks related to the WDA using an illustrative example. 

Since it has been proved that the WDA does not fit with the physical laws, Hampf and Rødseth (2014) 

suggested to use the weak G-disposability which is based on the materials balance principles (MBP). This 

approach is related to the first two laws of thermodynamics4. Let the input set be divided into two 

                                                           
4
 The first law of thermodynamics gives the principle of mass conservation i.e. what goes in goes out. The second law, also 

known as the law of entropy, states that using polluting inputs will inevitably result in pollution. 
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different subsets: material inputs 𝑥𝑀 which generate pollution and non-material inputs 𝑥𝑁𝑀 which are 

pollution free. The technology set can be defined as 

 

Ψ𝑏𝑎𝑑
𝑤𝑒𝑎𝑘 𝐺 = [(𝑥, 𝑦, 𝑏) ∈ ℝ+

𝐾+1+1| 𝑦 + 𝑠𝑦 = ∑ 𝜆𝑖𝑌𝑖

𝑁

𝑖=1

;  𝑏 − 𝑠𝑏 = ∑ 𝜆𝑖𝐵𝑖

𝑁

𝑖=1

 ; 

𝑥𝑀 − 𝑠𝑥𝑀 = ∑ 𝜆𝑖𝑋𝑖
𝑀

𝑁

𝑖=1

;  𝑥𝑁𝑀 − 𝑠𝑥𝑁𝑀 = ∑ 𝜆𝑖𝑋𝑖
𝑁𝑀

𝑁

𝑖=1

 ; 

𝑊′𝑠𝑥𝑀 + 𝐻𝑠𝑦 − 𝑠𝑏 = 0 ; ∑ 𝜆𝑖

𝑖

= 1 and 𝜆𝑖 ≥ 0; 𝑖 = 1, … , 𝑁 ] 

(6) . 

where 𝑠𝑥, 𝑠𝑦 and 𝑠𝑏 are respectively inputs excess, good output shortfall and pollution excess that are 

present in the technology due to inefficiency. 𝑊 is the vector of input pollution factors5 and 𝐻 

represents the recuperation factor associated to the good output6. As pointed out in Førsund (2009) the 

mass conservation equation (𝑊′𝑠𝑥𝑀 + 𝐻𝑠𝑦 − 𝑠𝑏 = 0) does not explicitly show how residuals are 

generated; instead the equation simply puts forward how the variables are related given the MBP. In 

addition, the mass balance equation introduces “some limits on derivatives in the system of equations”. 

Besides, Hampf and Rødseth (2014) have also demonstrated that under some assumptions the weak G-

disposability is equivalent to the weak disposability as proposed in Färe and Grosskopf (2012). 

Recognizing the importance of the materials balance in modelling the technology that generates 

unwanted outputs, Førsund (2009) recommended the use of the by-production methodology proposed 

in Murty and Russell (2002) and generalized by Murty et al. (2012). This approach, which relies on the 

estimation of two separate frontiers, assumes the cost disposability of bad outputs. This assumption is 

based on the idea that given the level of consumption of some inputs, only a minimal level of pollution 

can be reached and the presence of inefficiency can lead to the generation of more quantity than this 

                                                           
5 For instance one liter of fuel generates around 3.24 Kg of carbon dioxide from the extraction of the raw material to its 
consumption. 
6 The recuperation factor represents the part of the bad output that is embedded in the good output and thus prevented to be 
emitted. Generally the recuperation factor is set to zero. 



7 
 

minimal level. The global technology is viewed in the theory as the intersection of the two sub-frontiers. 

Empirically, Murty et al. (2012) defined this global technology as 

 

Ψ𝑏𝑎𝑑
𝑏𝑦

= (𝑥𝑀 , 𝑥𝑁𝑀 , 𝑦, 𝑏) ∈ ℝ+
𝐾𝑀+𝐾𝑁𝑀+𝑄+𝑅

| 𝑦 ≤ ∑ 𝜈𝑖𝑌𝑖

𝑁

𝑖=1

 ;  

𝑥𝑀 ≥ ∑ 𝜈𝑖𝑋𝑖
𝑀

𝑁

𝑖=1

 ;  𝑥𝑁𝑀 ≥ ∑ 𝜈𝑖𝑋𝑖
𝑁𝑀

𝑁

𝑖=1

 ; 𝑥𝑀 ≤ ∑ 𝜉𝑖𝑋𝑖
𝑀

𝑁

𝑖=1

 ; 

𝑏 ≥  ∑ 𝜉𝑖𝐵𝑖

𝑁

𝑖=1

 ;  ∑ 𝜈𝑖

𝑁

𝑖=1

= 1;  ∑ 𝜉𝑖

𝑁

𝑖=1

= 1;  𝜈𝑖, 𝜉𝑖 ≥ 0; 𝑖 = 1, … , 𝑁] 

(7) . 

As can be seen in (7), the global technology is represented with two intensity factors, each one 

associated to one different sub-technology. As presented in (7) the by-production approach offers the 

advantage of separating the operational performance and the environmental performance. However, 

the model empirically assumes independence between the two sub-technologies. Murty et al. (2012) 

proposed to compute an efficiency score by adapting the Färe-Grosskopf-Lovell index (Färe et al., 1985) 

and thus to give a weight of 50% to each sub-efficiency score. As argued by Dakpo (2014), these weights 

are not data driven and the choice made by Murty et al. (2012) departs from the philosophy of DEA. 

Dakpo (2014) then developed an extension of the by-production model by augmenting (7) with some 

dependence constraints relative to the pollution generating inputs7. 

 ∑ 𝜈𝑖𝑋𝑖
𝑀

𝑁

𝑖=1

= ∑ 𝜉𝑖𝑋𝑖
𝑀

𝑁

𝑖=1

 (8) . 

In the same line, as Murty et al. (2012), Sueyoshi et al. (2010) and Sueyoshi and Goto (2010) proposed a 

unification strategy that is based on the use of a single intensity factor. To this aim they separated the 

                                                           
7
 These dependence constraints have some interesting dual interpretations. 
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input slacks 𝑠𝑥 into their positive and negative parts which are mutually exclusive (𝑠𝑥
−. 𝑠𝑥

+ = 0). The 

model is specified as follows: 

 

Ψ𝑏𝑎𝑑
𝑢𝑛𝑖𝑓𝑖𝑒𝑑

= [(𝑥, 𝑦, 𝑏) ∈ ℝ+
𝐾+1+1| 𝑦 + 𝑠𝑦 = ∑ 𝜆𝑖𝑌𝑖

𝑁

𝑖=1

;  𝑏 − 𝑠𝑏 = ∑ 𝜆𝑖𝐵𝑖

𝑁

𝑖=1

 ; 

𝑥 − 𝑠𝑥
− + 𝑠𝑥

+ = ∑ 𝜆𝑖𝑋𝑖

𝑁

𝑖=1

;  ∑ 𝜆𝑖

𝑖

= 1 and 𝜆𝑖 ≥ 0; 𝑖 = 1, … , 𝑁;  

𝑠𝑥
−. 𝑠𝑥

+ = 0 ]8 

(9) . 

According to the authors, the different parts associated to the inputs define the possible adaptation 

choice made by the firm managers. The negative part 𝑠𝑥
− is related to the ‘natural disposability’, which 

reflects a negative adaptation since the manager under evaluation chooses to reduce the levels of the 

consumption of inputs in order to decrease pollution. On the other side, the positive part 𝑠𝑥
+ is linked to 

the presence of ‘managerial disposability’ (positive adaptation), and in this situation some managerial 

efforts (adoption of new technologies, substitution of clean inputs to polluting ones...) can lead the firm 

to increase its consumption of inputs and simultaneously reduce the volume of pollution generated. As 

pointed out in Manello (2012), the non-linearity introduced in the unified framework may generate some 

dominated efficient DMUs and thus may create some identification problems of the efficient DMUs since 

the two technology sets can generate contradictory results. 

2.2. Eco-efficiency assessment and decomposition 

As explained in Section 1, we choose in this paper to consider the maximal production intensity per unit 

of undesirable output as the objective for each of the previous models. We retain this approach because, 

first, it is in line with the definition of eco-efficiency (Huppes and Ishikawa, 2005), and second, the unicity 

of the ratio allows the comparison and the discussion of the models presented in this paper on the same 

foundation. Based on these ratios an eco-efficiency score can be computed by comparing the attainable 

optimal ratios to the actual observed ratio. The eco-efficiency can be measured by 

                                                           
8
 This non-linear program can be transformed into a mixed integer program by replacing the mutually exclusive constraint 

𝑠𝑥
−. 𝑠𝑥

+ = 0 with the new constraints: 𝑠𝑥
+ ≤ 𝑀ℎ+ , 𝑠𝑥

− ≤ 𝑀ℎ− , ℎ+ + ℎ− ≤ 1 where ℎ+ and ℎ− are binary and 𝑀 is a number that 
needs to be defined sufficiently large to avoid corner solutions. 
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 𝐸𝑐𝑜𝑒𝑓𝑓 =
𝑟𝑎𝑡𝑖𝑜𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑟𝑎𝑡𝑖𝑜𝑜𝑝𝑡𝑖𝑚𝑎𝑙
 (10)  

Based on the work of Hampf and Rødseth (2014) a decomposition of the performance score can be 

obtained relative to the possible choices available to the producers. These choices will be reflected by 

the number of decision variables in the objective function. 

 The most restrictive assumption specifies that the producer cannot freely choose nor the inputs 

nor the good output; both variables are given and only the level of the bad output is free of 

choice. The interesting point relative to this assumption is that it can be used to assess the 

technical inefficiency in pollution generation. Let’s denote by 𝑟𝑥,𝑦/𝑓
∗  the optimal ratio obtained 

under this assumption. 

 In a second less restrictive assumption both outputs are free of choice and are endogenous in 

the optimization programs. But the inputs are given and the producer does not have a free 

choice on these variables. Let’s denote by 𝑟𝑥/𝑓
∗  the optimal ratio obtained in this case. This ratio 

can be helpful to evaluate the existence of allocative inefficiency in the production of good and 

bad outputs. 

 A third more flexible possibility is to allow the free choice of the amount of inputs and both good 

and bad outputs. This means that all variables in the models are endogenously determined in the 

optimization program. Under this assumption, all DMUs converge to an optimal scale (the most 

productive scale size – MPSS – ). Denote by 𝑟./𝑓
∗  the optimal ratio. 

Based on these possibilities and the degree of adjustment offered to the producer, we can write the 

following relationship between the optimal ratios: 

 𝑟./𝑓
∗ ≥ 𝑟𝑥/𝑓

∗ ≥ 𝑟𝑥,𝑦/𝑓
∗  (11)  

If the eco-efficiency score is computed as 𝐸𝑐𝑜𝑒𝑓𝑓 = 𝑟𝑎𝑡𝑖𝑜𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑟./𝑓
∗⁄ , the following decomposition can 

be made: 
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 𝐸𝑐𝑜𝑒𝑓𝑓 =
𝑟𝑎𝑡𝑖𝑜𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑟./𝑓
∗ =

𝑟𝑎𝑡𝑖𝑜𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑟𝑥,𝑦/𝑓
∗ ×

𝑟𝑥,𝑦/𝑓
∗

𝑟𝑥/𝑓
∗ ×

𝑟𝑥/𝑓
∗

𝑟./𝑓
∗  (12)  

𝑟𝑎𝑡𝑖𝑜𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑟𝑥,𝑦/𝑓
∗  measures the eco-efficiency level when both inputs and good outputs are held fixed. More 

precisely as previously stated it evaluates the presence of technical inefficiencies in the generation of 

detrimental output. This measure has been coined the ‘weak ratio efficiency’ in Hampf and Rødseth 

(2014). 
𝑟𝑥,𝑦/𝑓

∗

𝑟𝑥/𝑓
∗  refers to the possible increase in the performance score when allowing more flexibility 

regarding the level of good output. This second component has been termed the ‘allocative ratio 

efficiency’. The last component 
𝑟𝑥/𝑓

∗

𝑟./𝑓
∗ , assesses the amount by which the ratio can be improved (relative to 

𝑟𝑥/𝑓
∗ ) when the manager can freely decide the amount of inputs in addition to the amounts of both 

outputs. Hampf and Rødseth (2014) refer to this third component as the ‘input ratio efficiency’. 

It is worth mentioning that mostly the models estimated in this paper are based on fractional 

programming. They can be linearized by using adequate transformations and variables changes (Charnes 

and Cooper, 1962). 

2.3. Pollution generating technologies in agriculture: a review of the literature 

Numerous studies have estimated farms’ efficiency in the presence of undesirable outputs. Most of this 

literature covers the generally known approaches of modelling pollution generating technologies. As it 

can be seen in the studies listed in appendix, most of the existing papers deal with nitrogen pollution 

arising from pig production. For instance Latruffe et al. (2013) estimated the technical efficiency of 

Hungarian pig producers under the production of nitrogen, a detrimental output for watershed. They 

assumed the strong disposability of nitrogen emissions and treated them as additional inputs. As earlier 

said, this approach has been vigorously attacked by Färe and Grosskopf (2003) and Färe and Grosskopf 

(2004) as it departs from the reality of the production process. In addition, assuming the strong 

disposability of bad outputs reflects situations where, with given quantities of inputs, one can produce 

unlimited amount of detrimental outputs, which is technically impossible. As a solution to this limit, 

Lansink and Reinhard (2004) developed a model that still treated bad outputs as inputs, but added the 

WDA of inputs which is modelled as in congestion situations (Färe and Grosskopf, 2001). On the opposite 

side, Yang et al. (2008), considering the presence of an abatement technology, included in their model 
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the abated amount of bad outputs as strongly disposable outputs. However, the commonly adopted 

approach in modelling detrimental variables as outputs is based on the WDA. In this line, Piot-Lepetit 

and Le Moing (2007) considered, in pig farming systems, nitrogen surplus as outputs and assumed the 

WDA of these emissions. The estimation strategy is based on the directional distance function proposed 

by Chung et al. (1997). 

By contrast to these studies, in the light of physical laws (thermodynamics), Coelli et al. (2007) applied 

the MBP to the case of pig-finishing farms in Belgium. Based on the mass balance equation, the authors 

estimated an iso-environmental cost line in a similar way as an iso-cost in a minimization scheme. They 

also demonstrated that under the WDA, a production system might not verify the mass conservation 

property which the authors assume to be inherent to all materials transformation process. Yet it seems 

that their approach suffers from the ambiguity in the treatment of non-material inputs (Hoang and Rao, 

2010). 

Recognizing the limits of some of the aforementioned methods (bad outputs treated as inputs; weak 

disposability), Asmild and Hougaard (2006) also proposed a ‘sort of data transformation’ in the case of 

nutrient surpluses in pig farming in Denmark. In their approach, instead of directly considering the 

nutrient surpluses (nitrate, potassium and phosphorous), they considered the nutrient removal by crops. 

Maximizing this good output (under strong disposability assumptions) indirectly reduces the nutrient 

surpluses. The model is set up as if the nutrient surpluses, mainly deriving from pig manure, serve as 

inputs to another production system (here represented by the production of crops). The authors 

developed in addition several two-step approaches for the estimation of technical efficiency. For 

instance, in a first step one can focus on the economic efficiency (traditional technical efficiency) and 

thus maximize the production of good outputs (gross returns) ignoring environmental variables. In a 

second step one can estimate the potential nutrient removal that is possible given that the farm is 

economically efficient. This two-step scheme gives priority to the economic efficiency, and then 

considers the environmental efficiency which is computed in a way that does not create any opportunity 

costs or increase the economic costs of the farm. This two-step approach can inversely be estimated by 

giving priority to environmental efficiency in the first step. 

Another strand of approach can be found in Picazo-Tadeo et al. (2011), and is based on the estimation of 

the frontier eco-efficiency (Kuosmanen and Kortelainen, 2005). This model estimates a ratio of economic 

outcomes (represented by value added or profit) on environmental pressures. In a dual perspective, the 
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model considers undesirable outputs as inputs and thus faces the same criticisms previously mentioned. 

A recent paper of Serra et al. (2014) explored by-production technologies modelling in the case of crop 

farm systems in Spain. We have not found an application in agriculture of the natural and managerial 

disposability concepts, nor the weak G-disposability. 

Finally, few studies in the agricultural sector have focused on the emissions of GHG. We can find in 

Kabata (2011) an application of the WDA to the case of crop and livestock production in the United 

States, where bad outputs consist in methane and nitrous oxide emissions. Shortall and Barnes (2013) 

used a data transformation function (inverse) to account for the carbon dioxide, methane and nitrous 

oxide emissions in the case of Scottish dairy farms. Toma et al. (2013) used two different models, the 

WDA and the eco-efficiency frontier estimation. Mohammadi et al. (2014) applied the joint Life Cycle 

Assessment (LCA)-DEA approach to the GHG emissions in paddy rice farms in Iran. 

3. Empirical application 

3.1. Data description and environmental impacts’ computations 

The empirical application of the models described on the previous section is conducted on a sample of 

1,302 farm-year observations between the period 1987 and 2013. The panel consists of 124 different 

farms specialized in meat sheep production and located in the centre of France in grassland areas. 

Several bookkeeping and production process characteristics are available in the database. Following the 

literature on farms’ technical efficiency, we have retained four inputs, namely utilized land, farm labour, 

operating expenses and structural costs. Operating expenses, also called proportional costs, comprise all 

costs related to animal feeding, crop fertilizers, pesticides and all the other costs directly associated to 

the presence of livestock (veterinary costs, mortality insurance, litter straw costs, marketing costs, 

animal purchase…). Regarding structural costs, they are mainly made of mechanization and building 

costs (depreciation, maintenance costs, expenses for fuels and lubricants, related insurances) as well as 

overheads (electricity, water, miscellaneous insurances, financial charges, opportunity costs of capital…). 

Operational expenses and structural costs are both expressed in constant currency (2005 Euros) to keep 

relative quantity based information. Utilised land represents the total number of hectares available to 

the producer for the sheep farming activity. This is essentially the main fodder area associated to the 

sheep livestock. Labour measures the quantity of full-time workers devoted to meat sheep production. 

On the output side, good output is measured by the quantity of meat production expressed in kilograms 

of carcass, and the environmental impacts (bad output) focus on GHG. The computations of the latter 
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are based on LCA methodology, which was used for the estimation of the three main GHG generally 

considered in livestock farming (carbon dioxide, methane and nitrous oxide). Since our interest is on 

global warming the three gases were summed up regarding their Global Warming Potential (GWP)9 

relative to carbon dioxide. The bad output is thus computed as the total GHG emissions expressed in 

carbon dioxide equivalent. When applying LCA we have restrained the system boundary (the perimeter 

of analysis) from the cradle to the farm gate. More, we adapted the GES’TIM (Gac et al., 2011) and the 

Dia’ terre® (Ademe, 2011) tools to our sample of meat sheep farms. These tools provide us the great 

majority of emissions factors required for the estimation of the global warming impact. The main 

characteristics of the sample are summarized in Table 1. 

On average, over the period of study, farms in our sample produced around a thousand kilograms 

carcass of meat on a land area of 74 hectares. The pollution intensity, which is measured as the ratio of 

GHG emissions on meat production, is about 38 kg of carbon dioxide equivalent per kg of carcass on 

average. The relative standard deviation is similar for all inputs and outputs (about 0.45), except for 

labour and pollution per meat kg for which it is smaller (respectively 0.35 and 0.28). 

Table 1: Summary statistics of the sample (period 1987-2013) 

Variables Mean Standard 
deviation 

Relative standard 
deviation 

Minimum Maximum 

Utilised land (hectares) 74.1 35.10 0.47 12.40 257.02 

Labour (full-time equivalents) 1.38 0.48 0.35 0.14 3.50 

Operating expenses (2005 Euros) 
28, 664 13, 171 0.46 1 014 122, 730 

Structural costs (2005 Euros) 
22, 765 9, 728 0.43 1, 645 62, 661 

Meat (kg) 
9, 913 4, 614 0.47 565 33, 028 

Total GHG emissions (kg CO2-eq) 
353, 141 149, 533 0.42 35, 777 1, 153, 434 

Pollution intensity (kg CO2-eq/kg 
meat) 38 11 0.28 19 105 

Notes: CO2-eq: carbon dioxide equivalent. The relative standard deviation is computed as the ratio of the standard deviation on 
the mean. 

3.2.  Eco-efficiency comparison: empirical results 

For the estimation, we consider here one single frontier which is estimated for the whole period (by 

pooling all observations together), that it to say we assume no technological change. In addition we 

                                                           
9 The GWP is warming effect relative to carbon dioxide over a period of 100-year time. It is about 25 for methane and 298 for 
nitrous oxide. 
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consider land and labour as non-material inputs that are assumed to generate no GHG emissions. By 

contrast, operating and structural costs are pollution generating. The average eco-efficiencies and their 

components calculated with all methods described in the previous section are summarized in Table 2. 

For comparison purposes, we have also estimated a classic production technology where pollution is not 

an issue to the producers who can freely choose both the levels of input consumption and also the level 

of the good output. We then evaluate the eco-efficiency for each farm given their unchanged pollution 

emissions. For the sake of simplicity we present the pollution intensity instead of the ratio of meat 

production per unit of GHG emission. As explained above, for the approaches that include pollution in 

the production technology, the eco-efficiency score is based on the flexible assumption of free choice of 

inputs, good output and bad output. 

Table 2: Eco-efficiencies for different pollution-generating technologies models: sample’s average over 
the period 1987-2013 

   Three sources of inefficiency (equation 
12) 

Models  Minimum pollution 
intensity (kg CO2-eq /kg 
meat) 

Eco-
efficiency 
score 

Weak ratio 
efficiency 

Allocative 
ratio 
efficiency 

Input ratio 
efficiency 

No pollution in the technology:  
free choice of good output  
and inputs  

10.69 0.300 - - - 

Pollution as input (model in 2) 19.19 0.540 0.590 0.949 0.974 

WDA with uniform abatement factor 
(model in 5) 

19.19 
0.540 0.581 0.967 0.974 

WDA with non-uniform abatement 
factor 

19.19 
0.540 0.572 0.961 0.997 

Weak G-disposability (model in 6) 19.19 0.540 0.682 0.895 0.888 

By-production modelling with 
independent technologies (model in 7) 

1.08 0.030 0.630 0.642 0.079 

By-production with an 
interdependence constraint across 
technologies 

9.56 0.269 0.635 0.663 0.681 

Unified model under natural and 
managerial disposability (model in 9) 

19.19 0.540 0.575 0.940 1.000 

Notes: CO2-eq: carbon dioxide equivalent 

The results in Table 2 show that all pollution generating models except the by-production approaches, 

converge to the same eco-efficiency score (54% on average) and the same pollution intensity (19 kg CO2-

eq/kg meat on average) as when residuals are considered as inputs. Hence these models suggest that 

farmers can reduce about half of their actual pollution intensity. An interesting feature of these 

aforementioned methodologies is that they all point out the same source of inefficiency, namely the 

weak inefficiency ratio. As explained earlier, this ratio accounts for the presence of technical 

inefficiencies in the pollution generation process since both inputs and good output are held fixed. 
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However, some small differences can be found for the case of the model of weak G-disposability which 

gives the highest score for the weak efficiency ratio. Besides, this model gives more importance to the 

other sources of inefficiencies. All these models also point out the quasi absence of input ratio 

inefficiency. For instance, for the unified model under natural and managerial disposability, the input 

ratio efficiency equals the unity. 

The most pessimistic model is the by-production modelling under independence across the two sub-

technologies. In fact this model leads to ‘unrealistic’ results in terms of eco-efficiency since 97% of 

inefficiency is found to be present in the sample. These questionable results can be explained by the fact 

that the model separately optimizes the operational efficiency (with the good output frontier) and the 

environmental efficiency (with the bad output frontier). However, when we impose an interdependence 

constraint, the by-production model yields more acceptable results and an average eco-efficiency score 

of 27%. Besides, by introducing the dependence constraints in the by-production model the three 

sources of inefficiency seem to play equal role in the explanation of the estimated eco-inefficiency with a 

contribution of about 30%. 

For comparison purpose, we also show the results of the technology that completely ignores the 

presence of undesirable outputs. In this alternative model, we relax the assumption of fixed levels of 

inputs, and the producer can thus freely chose both the inputs and the good output. This new 

development produces an eco-efficiency score of 30%. This result is very close to the one obtained under 

by-production with interdependent sub-technologies. This means that under this technology farmers can 

reach the same eco-efficiency score as under the technology that incorporates pollution (by-production 

with dependence constraints) by simply eliminating all the technical inefficiencies present in meat 

production. 

As earlier explained, under the flexible assumption that the producer can freely choose the levels of 

inputs, of good and of bad outputs, all the DMUs converge to the same eco-efficient farm. We can then 

obtain the optimal scale of operation that guarantees all farms to be eco-efficient. The results are 

summarized in Table 3. 

Again, all models except the by-production10 approach yield the same optimal size for an eco-efficient 

farm. In this situation, the best strategy in comparison to the sample average requires producers to 

                                                           
10

 We do not consider the results obtained with the by-production approach with independent technologies given the 
inappropriateness of the results. 
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reduce their consumption of inputs and still increase the levels of meat production. This reduction in 

input usage will also decrease the level of the GHG emissions. Based on the logic developed around the 

natural and managerial disposability, we can easily say here that farmers choose the negative adaptation 

to answer the problem of pollution reduction. 

In the case of by-production modelling under dependent technologies, the consumption of the non-

material input land is increased by almost 26% (in line with the observed sample average of utilised land) 

while the pollution generating inputs are reduced (respectively 54% and 28% for operational expenses 

and structural costs), in comparison to the sample’s average. This leads to lower levels of GHG emissions. 

Actually, with this by-production approach there is a substitution between non-material inputs (here 

mainly agricultural land) and pollution generating ones. Under this technology farmers can still produce 

20% more meat than the sample average production. 

However, the highest meat production is obtained under the pollution free technology where all inputs 

are increased to produce more than twice amount of meat (compared to the sample average). 

Nevertheless, this situation creates larger levels of absolute GHG emissions (ten times more than in the 

by-production and five times more than the other pollution technologies). The difference between 

pollution free technology and by-production approach seems to be a matter of trade-off: produce more 

good output to compensate for the pollution emissions (pollution free technology) or pollute less by 

reorganizing inputs and take advantage of the possible substitution between material and non-material 

inputs (by-production technology), and try to produce good output as much as possible given the new 

inputs. This trade-off implies for the case of meat sheep producers a choice between intensification and 

extensification strategies. 
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Table 3: Optimal scale for eco-efficient DMUs 

 Land 

(hectares) 

Labour 

(full-time 

equivalents) 

Operational 

expenses 

(2005 

Euros) 

Structural 

costs 

(2005 

Euros) 

Meat 

production 

(kg) 

GHG 

emissions 

(kg CO2-

eq) 
Sample average (actual observed levels) 74.1 1.38 28, 664 22, 608 9, 913 353, 141 

Models 

No pollution in the technology:  

free choice of good output  

and inputs 

87.1 2.17 122, 730 56, 439 33, 028 1, 153, 434 

Pollution as input 
36.1 0.98 27, 857 18, 183 12, 123 232, 701 

WDA with uniform abatement factor 
36.1 0.98 27, 857 18, 183 12, 123 232, 701 

WDA with non-uniform abatement factor 
36.1 0.98 27, 857 18, 183 12, 123 232, 701 

Weak G-disposability 
36.1 0.98 27, 857 18, 183 12, 123 232, 701 

By-production modelling 

with independent 

technologies 

Good 

output 

technology 
87.1 2.17 122, 730 56, 439 33, 028 - 

Bad output 

technology - - 1,793 1,751 - 35, 777 

By-production with an interdependence 

constraint across technologies 93.3 1.33 13, 087 16, 339 11, 850 113, 342 

Unified model under natural and 

managerial disposability 36.1 0.98 27, 857 18, 183 12, 123 232, 701 

4. Methodologies convergence or divergence: a discussion 

Although many of the presented models reach the same average optimal eco-efficiency score, they differ 

in their assumptions. From a theoretical perspective, models that consider pollution as input or as 

output under the weak disposability assumption produce arbitrary wrong trade-offs and do not capture 

the real nature of undesirable outputs. Murty et al. (2012) estimated these trade-offs and found a 

negative relation between pollution-generating inputs and the pollution level, which is definitely in 

opposition to the idea that these inputs are pollution generators. More, they also proved that under 

some conditions, for a fixed level of inputs, there exist large possibilities of good/bad output 

combinations that are efficient. This violates the idea behind by-production that there is only one 

minimal amount of undesirable outputs given the levels of inputs. Other shortcomings of the WDA have 

been reported by Hailu and Veeman (2001). 

To overcome the drawbacks of the previous two models (namely pollution as inputs and WDA), Murty et 

al. (2012) developed the by-production modelling by assuming that the production process is made of 

different sub-technologies, and the global technology is the intersection of the good and the bad outputs 
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sub-technologies. However, in the operationalization of the approach the authors assumed 

independence between both frontiers. We have seen here that under this assumption inconsistent 

results are generated. For this reason we rely on the new by-production modelling proposed in Dakpo 

(2014) by introducing some interdependence constraints which link the usage of material inputs in both 

sub-frontiers. Also in relation to this multiple frontier framework, Sueyoshi and Goto (2011) proposed a 

unification of the operational and environmental efficiency based on the use of one single intensity 

factor and also by allowing two possible opposite directions for the inputs. However, in light of the 

previous results, this interesting approach finally collapses into the model where pollution is considered 

as an additional input. 

The model assuming the weak G-disposability and the materials balance conditions is supposed to reflect 

the real production process by accounting for the laws of thermodynamics. However, in terms of results, 

this model also converges towards the one in which GHG emissions are treated as input.  

Finally, it is worth mentioning that, despite the fact that models which consider pollution under the 

WDA, or weak G-disposability, or unified model under natural and managerial disposability, converge to 

the same results in terms of eco-efficiency as the one where pollution is simply an additional input, some 

small differences can be found in the sources of improvements. 

5. Conclusion  

In performance benchmarking the impacts of environmental policies on firm’s efficiency have long been 

investigated. For this, several models of eco-efficiency calculation have been proposed to integrate and 

analyze the trade-offs between ‘intended outputs’ and detrimental environmental outcomes. In this 

paper we have empirically compared eco-efficiency obtained using the main models developed in the 

literature, for the specific case of meat sheep farms and GHG emissions. Eco-efficiency is computed as 

the ratio of good output on bad output and is aimed at providing easily interpretable results. To our 

knowledge this is the first paper that undertakes eco-efficiency comparison in the case of livestock 

farming systems. Our results also prove that the commonly used models based on the WDA and some 

recent developments like the weak G-disposability or the unified efficiency measure under natural and 

managerial disposability, all converge to the same results like in the models that treat residuals as inputs. 

These results were obtained under the most flexible assumption which allows producers to freely choose 

all the variables in the technology. Given this limitation of these models, the by-production approach 

with the inclusion of the dependence constraints seems to provide sound results in the case of GHG 



19 
 

emissions. In light of the obtained results, all the models come to the same conclusion of the presence of 

large inefficiencies in meat sheep farms. This is quite understandable since there is no effective 

environmental regulation to control livestock farming’s GHG emissions in France. Moreover, the results 

also showed that there is a trade-off between intensification and extensification as response to the 

emissions of GHG in meat sheep production. One limitation of this study is that we did not account for 

carbon sequestration in soils which is a specific feature of livestock farming as a potential abatement 

option. This aspect could be explicitly modelled in the by-production technology. 
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Appendix: Undesirable outputs in agriculture: some applications 

Authors Decision Making Units Country Undesirable outputs Bad outputs treated as: Assumptions (and model) 
about bad outputs 

Ball et al. (2001) 48 States United States Nitrogen and pesticide 
surpluses, pesticide toxicity 
on human health and fish 

Outputs Weak disposability 
(directional distance 

function) 

Shaik and Perrin (2001) Nebraska data from 1936 
to 1997 

United States Nitrate pollution and 
pesticide environnemental 

impact 

Outputs Weak disposability 
(hyperbolic efficiency 

measure) 

Shaik et al. (2002) Nebraska data from 1936 
to 1997 

United States Nitrogen pollution 
(surpluses) 

Outputs and 
inputs 

Two models: 1-)Weak 
disposability of undesirable 

outputs, 2-) strong 
disposability of undesirable 
outputs treated as inputs. 

Lansink and Reinhard 
(2004) 

Pig producers The Netherlands Phosphorus surplus and 
ammonia emissions 

Inputs Weakly disposable inputs 
(like in congestion situations) 

Ball et al. (2004) 48 States United States Risk to human health and 
aquatic life of pesticide 

runoff and leaching 
 

Inputs Strong disposability 

Asmild and Hougaard 
(2006) 

Pig producers Denmark Nutrient removal (nitrate, 
potassium and 
phosphorus) 

Outputs Strong disposability 
(transformation of nutrient 

surpluses into nutrient 
removal) 

Piot-Lepetit and Le Moing 
(2007), and 

Piot-Lepetit (2010) 

Pig producers France Nitrogen surplus Outputs Weak disposability 
(directional distance 

function) 

Coelli et al. (2007) Pig producers Belgium Phosphorus emissions Residuals Materials balance principles 

Yang et al. (2008) Pig producers Taiwan Wastewater (biochemichal 
oxygen demand -BOD, 

chemichal oxygen demand 
-COD, suspended solid -SS) 

Outputs Assume the presence of 
abatement technologies and 

consider the abated bad 
outputs as strongly 

disposable 

Hoang and Rao (2010) 29 countries OECD countries Balance of cumulative 
energy 

Residuals Materials balance principles 

Picazo-Tadeo et al. (2011) Rain-fed agricultural 
systems (crop producers) 

Spain Specialization (tendency 
towards monoculture), 

nitrogen and phosphorus 
balance, pesticide risk, 

Inputs Strong disposability (use of 
eco-efficiency model) 
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Authors Decision Making Units Country Undesirable outputs Bad outputs treated as: Assumptions (and model) 
about bad outputs 

energy balance (energy 
ratio of inputs on outputs) 

Hoang and Coelli (2011) 30 countries OECD countries Nitrogen and phosphorus 
surpluses 

Residuals Material balance principles 

Kabata (2011) Crop/livestock production; 
data for States  

United States Methane and nitrous oxide 
gas 

Outputs Weak disposability 
assumption (hyperbolic 

efficiency measure, 
directional distance function) 

Ramilan et al. (2011) Virtual dairy farms New Zealand Nitrogen discharge Outputs Weak disposability 
assumption 

Iribarren et al. (2011) 
 

Dairy farms Spain methane, ammonia, 
nitrous oxide, wastewater, 

Not incorporated in the 
model 

LCA+DEA methodology 

Arandia and Aldanondo-
Ochoa (2011) 

Crop farmers and 
vineyards 

Spain Nitrogen surplus and 
pesticide impacts 

Outputs Weak disposability without 
the equality constraints 

Picazo-Tadeo et al. (2012) Olive-growing producers Spain Soil erosion, pesticide risks 
on biodiversity, energy 

balance 

Inputs Strong disposability (use of 
eco-efficiency model) 

Berre et al. (2012) Dairy farms Reunion Island (France) Nitrogen surplus Outputs Weak disposability 
(directional distance function 

with heterogeneity in 
abatement factors) 

Skevas et al. (2012) Specialized arable farms The Netherlands Pesticide impacts on water 
organisms and biological 

controllers 

Outputs and inputs Weak disposability of 
undesirable inputs/outputs 

in a dynamic perspective 
(non-radial directional 

distance function) 

Hoang and Nguyen (2013) Rice producers South Korea Nitrogen and phosphorus 
surpluses 

Residuals Materials balance principles 
(mass balance equation and 
iso-environmental cost line) 

Latruffe et al. (2013) Pig producers Hungary Nitrogen produced Inputs Strong disposability (free) 

Nin-Pratt (2013) Livestock farms 142 countries Nitrogen surplus Residuals Materials balance principles 
(mass balance equation and 
iso-environmental cost line) 

Kuosmanen and 
Kuosmanen (2013) 

Data from 1961-2009 Finland Nitrogen and phosphorus 
surpluses 

Residuals Dynamic materials balance 
conditions 

Serra et al. (2014) Crop farms Spain Nitrogen and pesticide 
pollution, damages to 

human health 

By-products Cost disposability (by-
production modeling) 

Shortall and Barnes 
(2013) 

Dairy farms Scotland Carbon dioxide, methane, Outputs Strong disposability (inverse 
data transformation 



22 
 

Authors Decision Making Units Country Undesirable outputs Bad outputs treated as: Assumptions (and model) 
about bad outputs 

nitrous oxide function) 

Falavigna et al. (2013) 102 provinces Italy Nitric acid emissions Outputs Weak disposability 
(directional output distance 

function) 
 
 

Toma et al. (2013) Dairy farms Scotland GHG emissions and 
nitrogen surpluses 

Outputs and 
inputs 

Two models: 1-) weak 
disposability assumption of 

bad outputs, 2-) Eco-
efficiency model (strong 

disposability) 

Beltrán-Esteve et al. 
(2013) 

Rain-fed olive farms Spain Pressures on 
environmental resources 

and biodiversity (soil 
erosion and energy used) 

Inputs Eco-efficiency model (strong 
disposability) adapted to the 

case of meta-frontier) 

Mohammadi et al. (2014) Paddy rice farmers Iran GHG emissions (carbon 
dioxide, methane, nitrous 
oxide, ammonia, nitrates), 
phosphorus emissions in 

water 

Not incorporated in the 
model 

LCA+DEA methodology 

Note: in Toma et al. (2013) the authors refer to the first model to as the undesirable output oriented model (UO) and to the second model as the normalized undesirable output 
oriented model (NUO) as developed in Tyteca (1996). 
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