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Abstract.  

In this paper we rely on a random parameter approach to account for the 

unobserved heterogeneity of farms/farmers in the estimation of production choices 

model. We use a Stochastic Expectation-Maximization algorithm to estimate a 

Nested Multinomial Logit model of yield and acreage choices and perform some 

simulations using this model. This approach allows accounting for farms’ and 

farmers’ heterogeneity in a flexible way. Our results show that heterogeneity 

significantly matters in agricultural production choice models and that ignoring the 

heterogeneous determinants of farmers’ choices can have important impacts on 

estimation and simulation outcomes of micro econometric models. Estimates of 

random parameter models such as the one presented here can be used for, at least, 

two purposes: for the calibration of simulation models accounting for farm 

unobserved heterogeneity and to investigate the potential explanations of this 

unobserved heterogeneity. 
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Introduction 

Evidences of the effects of unobserved heterogeneity in micro-econometric models are 

now pervasive in many applied economics fields. During the last two decades applied 

micro-econometricians have developed tools to estimate models explicitly accounting for 

the effects of unobserved heterogeneity on economic choices. These tools have already 

been successfully used in several applied economics domains. Empirical studies 

highlighting the role of unobserved heterogeneity effects in econometric models can be 

found in labor economics, in industrial organization, in transportation economics or in 

international trade economics. 

Consumer choice models assume that consumers’ preferences are heterogeneous and that 

this unobserved heterogeneity has important effects on product demands, especially for 

differentiated products (see, e.g., Ackerberg et al 2007). Wage equations are specified 

accounting for the fact that workers’ abilities are heterogeneous. While unobserved, this 

heterogeneity in abilities is shown to determine a large part of the observed wage 

variability as well as of the returns to education (see, e.g., Heckman and Sedlacek, 1985, 

Heckman, 2001). Firm choice models account for the fact that firms use different 

technologies and, as a consequence, that they have different productivity levels and various 

supply choices (see, e.g., Eaton et al 2011). An important point is that the effects of 

unobserved heterogeneity are not simply added to the models considered above. These 

effects also affect the responses of these models to important interest variables. 

Our view is that similar heterogeneity features characterize agricultural production choices. 

Farms and farmers are heterogeneous and this heterogeneity affects the way farmers 

respond to, e.g., economic incentives. 

The objectives of this article are twofold. First, we aim at showing that unobserved 

heterogeneity effects significantly matter in empirical agricultural production choice 

models. Second, we aim at showing that tools recently developed by micro-

econometricians and statisticians allow specification and estimation of econometric 

agricultural production choice models accounting for farms’ and farmers’ unobserved 

heterogeneity in a fairly flexible way. 

Farmers face different production conditions due to heterogeneous soil quality or usual 

climatic conditions across space. They also own different machineries and different wealth 
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levels. Finally, farmers are also different because of their various educational level or 

abilities, as well as because they may have different objectives with respect to income risk 

or with respect to the leisure versus labor trade-off. These heterogeneity sources are likely 

to have important impacts on farmers’ production choices. 

But to control for the effects of these heterogeneity sources is difficult in practice, for two 

main reasons. First, as shown by the short list given above, potential heterogeneity sources 

are numerous. Second, many heterogeneity sources are not suitably described in the data 

sets usually used by agricultural economists. As a result, empirical investigators generally 

rely on a few variables – e.g. farms’ size, farmers’ age, farmers’ education, farms’ location 

or, when available, rough soil quality indices – to control for the effects of many 

heterogeneity sources on farmers’ production choices. As a matter of fact, numerous 

important heterogeneity sources are unobserved for agricultural production modeling. 

Means usually employed by agricultural production economists to cope with the 

unobserved heterogeneity of farms and farmers depend on their modeling approaches and 

purposes. 

Mathematical programming models used to analyze agricultural supply responses to 

economic policies (or other determinants of farmers’ choices) are usually built by 

considering sets of farms, of small regions or of farm-types. A mathematical programming 

model is calibrated for each element of the considered set of “farms”. This disaggregated 

calibration procedure allows controlling for farms’ and farmers’ unobserved heterogeneity. 

Of course the lack of statistical background of the standard calibration procedures is often 

pointed out as a major limitation of agricultural supply mathematical programming models 

(Howitt 1995 ; Heckeleï and Wolff 2003 ; Heckeleï et al 2012). However, the simulations 

provided by these models appear to be highly valued by decision-makers. These provide 

disaggregated results with respect to the simulated effects of agricultural policy measures 

on farmers’ choices across more or less large geographical areas. 

By comparison, the ability of micro-econometric models of agricultural production choices 

to account for farms’ and farmers’ heterogeneity is much more limited. As recalled above, 

only a few control variables are usually available to agricultural production economists. 

Standard specifications of econometric agricultural production choice models can be 

defined as a sum of a deterministic part and of a vector of random error terms. In these 
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models, farmers’ responses to economic (or other) incentives are governed by the 

deterministic part – i.e. by a few statistically estimated parameters – and the effects of 

farms’ and farmers’ unobserved heterogeneity are “pushed” into additively separable error 

terms. This often leads to simulation results which are unrealistically homogeneous across 

farms. 

The agricultural production choice models proposed in this article allow accounting for 

farms’ and farmers’ unobserved heterogeneity while being empirically tractable. They can 

also be used to design simulation models in which a parameter vector is “statistically 

calibrated” for each sampled farmer. 

We adopt the random parameter modeling framework. This framework allows estimating 

standard production choice models under the assumption that the model parameters are 

farmer specific. Basically, the considered models allow the model of each sampled farmer 

to have its own parameter vector and, thereby, permit to account for unobserved 

heterogeneity effects across farmers. Standard data set, even panel data sets, do not permit 

direct estimation of the individual parameters. The objective of the estimation is to 

characterize the distribution of the model parameters across the considered farmer 

population. 

We illustrate these points through the specification and the estimation of a multicrop 

econometric model with random parameters. The Multinomial Logit (MNL) framework 

proposed by Carpentier and Letort (2013) was chosen due to its simplicity, to its parameter 

parsimony and to the easy interpretation of its parameters. The specified model being 

parametric, we rely on the Maximum Likelihood (ML) framework for its estimation. More 

specifically we use estimators and optimization procedures specifically designed by 

statisticians for the estimation of a class of models to which random parameter models 

belong. 

The empirical application considers a sample of French crop producers observed from 

2004 to 2007. Obtained results demonstrate that unobserved heterogeneity matters for the 

modeling of micro-economic agricultural production choices, even within a small area. 

Key parameters of farmers’ choice models are significantly affected by unobserved 

heterogeneity effects, i.e. exhibit significant variability across farmers. We also show how 

random parameter models can be used to “statistically calibrate” a multicrop simulation 
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model based on a sample of heterogeneous farms. Simulation results show that it is 

important for the estimated models to allow farmers to respond heterogeneously to 

homogeneous economic incentives. 

The general features of random parameter models are presented in the first section, 

together with their main advantages and limitations. The second section presents the 

multicrop econometric model that we consider in order to investigate the advantages of 

accounting for unobserved heterogeneity in agricultural production choice models. 

Identification and estimation issues are discussed in the third section. The estimation 

results and their interpretations are provided in the fourth section.  

 

1. Unobserved heterogeneity and random parameter models 

This section presents the main features of random parameter models of agricultural 

production choices. It also introduces important elements to be used in the presentation of 

the estimation issues. We consider short run production choices of farmers –i.e. an acreage 

(share) demand system and a yield supply system in the empirical application – and we 

take for granted that farmers’ choices rely on heterogeneous determinants. We consider the 

use of panel data so that observations are indexed by 1,...,i N=  (farm/farmers) and 

1,...,t T=  (year). 

A random parameter model is composed of two parts. The first part of the model, the 

“behavioral model” (or the “kernel model” in Train’s (2007, 2008) terminology), formally 

describes the causal process of interest and defines its statistical characteristics conditional 

on the considered random parameters (and on the exogenous variables). Basically, the 

“behavioral model” for agricultural production choices is a standard agricultural 

production choice model in which some or all parameters are chosen to be farmer specific, 

which imposes an examination of the statistical relationships between these parameters and 

the other elements of the model, i.e. its explanatory variables and error terms. 

The second part of the model defines the characteristics of the distribution of the random 

parameters (conditional on the exogenous variables), i.e. the “mixing” distribution of the 

model according to the terminology used in statistics. 

The equation 

(1) ( , ; )it it it i=c r z e q  



7 

 

describes the production choices itc  of farmer i in year t as a known response function r  to 

the determinants of these choices ( , )it itz e , whether these determinants are observed or not. 

The term itz , respectively ite , is observed, respectively unobserved. The response function 

r  is parameterized by a farmer specific parameter vector iq . Note that if the random terms

( , )it ie q  are unobserved to the econometrician, they are known to farmer i in t and partly 

determine its choices through their effects in r . Equation (1) is a deep structural model, or 

an “all causes” model. It defines how the choice of farmer i, itc , is caused by its 

determinants ( , )it itz e up the characteristics of this farmer and of his farm, iq . Equation (1) 

can be any agricultural production choice model where the usual fixed parameters, at least 

some of them, are replaced by farmer specific parameter vector iq .1 

In a short run production choice context, the random parameters iq  mainly capture the 

effects of the farms’ natural or quasi-fixed factor endowments, of the farmers’ production 

technologies and of farmers’ characteristics. The more these effects vary across farms in 

the considered population, the more likely is the distribution of iq  to exhibit significant 

variability.  

Equation (1) is completed by statistical assumptions in order to define the “behavioral 

model” of the considered random parameter model. It is assumed here that itz  and ite  are 

independent conditionally on iq . I.e. it is assumed that controlling for the farms’ and 

farmers’ characteristics ensures that itz can be interpreted as purely exogenous factors – 

such as market prices or climatic events – affecting farmers’ choices. It is further assumed 

that iq  and ite  are statistically independent. This assumption relies on the idea that iq  

captures the permanent unobserved characteristics of farmer i affecting itz  while ite  mostly 

represents the effects of idiosyncratic shocks on itz  – i.e. ite  basically is a “standard” error 

term.  

                                                           
1 The functional form of r  can also be defined up to a fixed parameter vector to be estimated, as in our 
empirical application. The response function can also depend on available variables describing the farmers 

or/and or their farms (these may also be included in the vector itz ). These extensions are straightforward and 

are ignored here to reduce the notational burden. 
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We assume here that itc  (and thus ite ) and iq  are continuous random variables. The 

behavioral model is parametric, as it is the case in our empirical application, if the 

distribution of ite , denoted by ( )iteD , is assumed to be a member of a given parametric 

distribution family. This family is characterized by the density ( ; )t tg e µ . Of course ( )iteD  

and equation (1) directly define the distribution of itc  conditional on ( , )it iz q , i.e. 

( | , )it it ic z qD . Assuming that the response function r  is invertible in ite , the density of 

( | , )it it ic z qD  is given by: 

(2) ( )( ) ( )
1

( 1) ( 1)
det( | , ; ) , ( , ; ); ( , ; );

it
it it i t it it it i i it it i tf g

−
∂ − −
′∂=

e
c z q µ r z r z c q q r z c q µ . 

Equation (1) and the independence assumptions described above define a “behavioral 

model” which can be used with cross-section data. With panel data additional assumptions 

are required in order to describe the eventual dynamic features of the considered choices. It 

is assumed here that the modeled choice process is essentially static in the sense that itz  

and ite  are independent conditionally on iq  for any pair of years ( , )s t , i.e. itz  is assumed 

to be weakly exogenous with respect to ite  according to the panel data econometrics 

terminology. This condition simplifies the exposition and is assumed to hold in our 

empirical application. 

This application considers short-run crop production choices and relies on a short panel 

data set, i.e. with 4T = . These choices are modeled as static choices because the main 

dynamic aspects of crop production choices are due to crop rotations. Such dynamic effects 

can be suitably approximated by farmer specific parameters because crop rotation effects 

imply highly persistent dynamic effects in the crop production choices when farmers’ base 

their production choices on a few rotation schemes. These elements also provide arguments 

for assuming that the ite  terms are independent across t. 

Under these assumptions the joint density of the vector 1( ,..., )i i iT≡c c c  conditional on 

1( , ) ( , ,..., )i i i i iT≡q z q z z is given by: 

(3) 
1

( | , ; ) ( | , ; )
T

i i i it it i tt
f f

=
= ∏c z q µ c z q µ . 
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where 1( ..., )T≡µ µ µ . Of course, farmers’ choices are linked across time due to their relying 

on the same parameter vector iq . But these choices are assumed to be independent across 

time conditionally on iq . 

According to the assumption set describe above farmers’ choice process is sufficiently 

stable across time for its main feature to be captured by parameters which are constant 

across time. This assumption set can hold for short run choices during a relatively small 

time period. Farms and farmers’ production technology generally evolve slowly over time. 

This allows assuming that the parameters iq  of the production choice model remain 

constant over a few years. Short run production choices are repeated each year and follow 

the same scheme as long as the production technology and the quasi-fixed factor 

endowment do not change. 

The second part of a parametric random parameter model describes the distribution of the 

farmers’ specific parameters iq  conditional on the observed variables itz . It is assumed 

here that itz  and iq  are independent. This independence assumption holds, either if the 

heterogeneity control variable ic  contains the factors underlying the statistical dependence 

of itz  and iq , or if itz does not vary across i. 2 It implies that one just needs a statistical 

model for ( )iqD . As in the empirical application, we define a parametric model for ( )iqD . 

This model is characterized by the density ( ; )ih q η  defined up to the parameter vector η. 

( )iqD  describes the distribution of iq across the considered famers’ population. The more 

the iq  varies across farmers, the more heterogeneity matters to model farmers’ choices itc . 

Of course the choice of the distribution ( )iqD  is crucial to suitably capture the 

unobserved heterogeneity effects in the considered model. Being related to unobserved 

variables, this choice basically is an empirical issue. It can be based on trials with different 

parametric models. Using flexible parametric models, e.g. finite discrete mixtures of 

Gaussian models, or non parametric models appears to be difficult in practice. Such models 

can only be used when the dimension of iq  is very small and with very large samples. 

                                                           
2 In the empirical application presented in the next sections, itz  contains price variables which mostly vary 

across years and year dummies, ensuring that iq  and itz  can be considered as independent variables. 
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Specification of the role of iq  in the model of itc  depends on how unobserved 

heterogeneity effects are expected to affect farmers’ choices. Standard panel data models 

generally assume that the effects of iq  and of ite  are additively separable in r , with e.g.  

( , ; ) ( )it it i it i it= + +r z e q ρ z q e . In this case the so-called “individual effect” iq  does not 

affect the effect of itz  on itc , implying homogeneous responses of itc  to changes in itz . 

Keane (2009) discusses this point and highlights a basic trade-off. Econometric models 

defined as the sum of a deterministic part ( )itρ z  and of random terms i it+q e  are relatively 

easily estimated by using semi-parametric estimators. But such models do not suitably 

account for the effects of unobserved heterogeneity when these effects are not additively 

separable in the considered response functions, i.e. when ( , ; )it it i
∂
∂z

r z e q  actually depends 

on iq . Keane (2009) basically argues that the use of relatively involved inference tools as 

well as parametric assumptions on the distribution of the random terms ( , )it ie q  may be a 

reasonable price for buying the opportunity to introduce rich unobserved heterogeneity 

effects in the considered model. 

Of course, this trade-off is an empirical issue and depends on the modeled choice process. 

But empirical evidences accumulated in other applied economics fields suggest that it is 

worth investigating this trade-off for agricultural production choice modeling. This is the 

main object of this article with a particular focus on the unobserved heterogeneity effects 

on farmers’ responses to economic incentives. 

The distribution of the dependent variable ic  conditional on its observed determinants iz , 

i.e. of ( | )i ic zD , is a key concept for estimation purposes.  Its density defines the 

likelihood function to be used in the ML framework. The density of ic  conditional on iz  is 

the mean of that of ic  conditional on ( , )i iz q  integrated over the distribution of  iq : 

 (4) ( | ; ) ( | , ; ) ( ; )i i i if f h d= ∫c z θ c z q µ q η q . 

The term 1( ,..., , )T≡θ µ µ η  is the “complete” parameter vector of the considered parametric 

random parameter model. The integral in equation (4) cannot be solved analytically in 

general but this issue is ignored for the moment.  
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Statistical estimates of  θ  allow the investigation of the distribution of the random 

parameter iq . First, these estimates can be used to test the empirical relevance of the 

random parameter specification by checking whether iq  exhibits true variations or not. If 

θ  contains “variance parameters” then simple parametric tests can be used. Second, the 

estimates of θ  can also be used to interpret the empirical content of the iq  terms. E.g., the 

statistical relations among the elements of iq  may suggest interpretations of their 

variations.  

The statistical estimates of θ  can also be used to “statistically calibrate” a simulation 

model based on the considered random parameter model. This simulation model can be 

based on estimates of the parameters for each sampled farmer. The distribution ( )iqD  is an 

ex ante or prior distribution of the random parameter. It describes the distribution of iq  in 

the considered farmer population. The minimum mean squared error estimator of iq  for 

any farmer taken at random in the considered population is simply the mean of iq , [ ]iE q . 

Of course, conditioning on the information set available for farmer i provides more 

accurate estimates, i.e. use of the information provided by( , )i ic z  allows defining more 

precise estimates of iq  based on ( | , )i i iq c zD .3 By application of Bayes’ rule the density of 

iq  conditional on ( , )i ic z  is given by: 

(5) ( | , ; ) ( , , ; ) ( ; )i i i i i i ih hω=q z c θ c z q θ q η   where  
( | , ; )

( , , ; )
( | ; )
i i i

i i i
i i

f

f
ω ≡ c z q µ

c z q θ
c z θ

. 

This density ( | , ; )i i ih q z c θ  – which is designated as the ex post or a posteriori density of 

iq  (conditional on what is known about farmer i) – can be used to integrate[ | , ]i i iE q c z , 

the best predictor of iq  conditional on ( , )i ic z  according to the minimum squared 

prediction error criterion4. 

We use the term “statistical calibration” instead of “estimation” to refer to the computation 

of the of iq  conditional on ( , )i ic z . These predictions rely on ( , )i ic z , the limited 

information available on farmer i, and are statistical in the sense that they depend on a 
                                                           
3 Even a single observation ( , )it itc z  for farmer i is valuable. 
4 Tell me what farm i has chosen, I’ll tell you of which kind is likely to be farmer i. You can trust me because 
I know how farmers decide and because I know the characteristics of the farmers’ population. 
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statistical estimate θ  as well as on the considered random parameter model which 

basically is a statistical model structured by a few micro-economic assumptions.  

 

 

 

2. The random parameter multicrop model 

The multicrop model considered here is a random parameter version of a model proposed 

by Carpentier and Letort (2013). This model combines a Nested MNL acreage share model 

with quadratic yield functions. This section presents the main features of the model to be 

used in the empirical application. Additional details related to this model and its theoretical 

background can be found in Carpentier and Letort (2013). 

The considered multicrop model assumes that farmers maximize their expected profit in 

two steps. First they maximize the expected return to each crop under the assumption that 

this return doesn’t depend on the crop acreages. Second, farmers allocate land to different 

crops to maximize their expected profit provided that they incur implicit acreage 

management costs. These management costs provide incentive for crop diversification. 

The crop set {0,1,..., }K≡K  is partitioned into mutually exclusive crop groups gK  for 

{0,1,..., }g G∈ ≡G .5 This partition is defined to account for the fact that different crops 

require different management efforts and compete more or less for, e.g., quasi-fixed input 

uses. The groups are defined so that any crop compete more in the land allocation process 

with the other crops of its group than it does compete with crops of other groups. Group 0 

contains a single crop, crop 0. As shown below, crop 0 plays a specific technical role in the 

model. 

The “behavioral” model of the considered multicrop model is an equation system 

composed of a yield supply sub-system: 

(6a) { 2 2
, , , , ,1/ 2   for  and 0,1,...,k it k i k t k it k it k it gy w p v k g Gβ δ γ −= + − × + ∈ =K  

 and of an acreage share sub-system: 

                                                           
5 This partition allows defining a two-level Nested acreage choice model. Further partitioning the crop groups 
allows defining multi-level Nested acreage choice model. 
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(6b)
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with 0, ,1
1

K

it k itk
s s

=
= −∑ , by the total land use constraint. 

Equation (6a) defines the yield supply of crop k as a function of the (anticipated) price of 

crop k, ,k itp , of the price of an aggregate variable input , itw , and of an error term.  

The yield function of crop k is obtained by maximizing in the aggregate variable input 

level, ,k itx , the expected margin of crop k, , k itπ , under the assumptions that the yield 

function is quadratic in the aggregate variable input level: 

(7)  { 21
, , , , , , ,1/ 2 ( )k it k i k t k it k k i k it k ity v xβ δ γ λ υ−= + + − × + −  with , ,[ ] [ ] 0k it k itE v E υ= =  

and that the random terms ,k itυ  (which may include a year specific effect) are observed 

when the input level is decided.6 This yield function is parameterized by two fixed 

parameters, the curvature parameter kγ  and the year specific yield effect ,k tδ , and a 

random parameter ,k iβ . It depends on the effects of random events represented by ,k itv  and 

,k itυ . Provided that kγ  needs to be positive for the yield function to be strictly concave, the 

farmer specific parameter ,k iβ  can be interpreted as the maximum expected yield of crop k 

on farm i. This term depends on the natural endowment of the farm, on the production 

technology used by the farmer as well as on his ability. 

The optimal input level of farmer i in t on crop k is thus given by:   

(8) 1
, , ,0 , ,k it k i k it k it k itx w pλ γ υ−= − +  

and the corresponding expected gross margin is given by: 

                                                           
6 Whether the random event effects ,k itv  and/or the year specific effects ,k tδ  are observed or not doesn’t 

matter. These effects are forgone by the considered (risk neutral) farmer. 
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(9) ( ) 2 1
, , , ,0 , ,1/ 2k it k it k i k k it k it it k ip w p wπ β δ γ λ−= + + × − . 

This gross margin level is expected by the farmer at the time of his acreage choices, i.e. 

before the observation of the random events represented by ,k itv  and ,k itυ , and of the year 

specific effect ,k tδ . The expectation across t of the year effect ,k tδ  is set to be equal to an 

average year effect: 1
,k k t

t

Tδ δ−= ∑ . Input demand equation (9) is not included in the 

estimated multicrop models because the input use levels are not observed at the crop level 

in our data set, they are only recorded at the farm level.7 

Equation (6b) defines the acreage share optimal choices based on the expected profit 

maximization problem given by: 

(10) { }( : ) ,max ( : )  s.t.  1
ks k k k it i k kk k

s C s k sπ∈ ≥ ∈ ∈
− ∈ =∑ ∑0K K K

K . 

The optimal acreage shares maximize the expected gross revenue of the farm, 

, ,k it k itk
s π

∈∑ K
, minus the implicit management costs of the acreage choice, ,( : )i k itC s k ∈K  

which is assumed to be strictly convex in the acreage share vector, under the total land use 

constraint, , 1k itk
s

∈
=∑ K

. This constraint defines the crop 0 acreage share as a  function of 

the other acreage shares with 0, ,1
1

K

it k itk
s s

=
= −∑ . The implicit management cost function 

iC  plays a crucial role here. Under the assumption that it is strictly convex in the acreage 

share vector ( : )ks k ∈K , it formally defines the diversification motive of the crop acreage. 

It is defined by Carpentier and Letort (2013) as the sum of the unobserved costs and the 

shadow costs related to binding constraints due to limiting quasi-fixed factor quantities or 

to bio-physical factors.8 Since the quasi-fixed factor endowments are highly 

heterogeneous, this cost function needs to be specified as farmer specific as much as 

possible. The functional form of the acreage share models in equation system (6a) are 

obtained by choosing the following Nested MNL management cost function: 

                                                           
7 This aggregation problem can be overcome by defining an input use allocation equation as in Carpentier 
and Letort (2012). However, this option would have increased significantly the complexity of the considered 
multicrop model and of its estimation. 
8 It can also be interpreted as a penalty function for deviations from some reference acreage vector for which 
the quasi-fixed factor endowment of the farm is best suited. 
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(11) 
, ,

1 1 1
, ,

( : ) ( )

                             (1 ) ln ln

g

g

i k k k i k itg k

i i g i g g g i k kg g k

C s k s u

s s s s

χ

α α ρ ρ
∈ ∈

− − −
∈ ∈ ∈

∈ = +

+ − +

∑ ∑

∑ ∑ ∑
G K

G G K

K
  

up to an additive fixed cost. The term 
g

g kk
s s

∈
≡∑ K

 defines the acreage share of group g. 

The strict convexity of iC  is ensured if , 0g i iρ α≥ >  for g ∈G . All parameters of iC  are 

assumed to be farmer specific to ensure its ability to capture the heterogeneity of the 

farms’ capital endowments. The heterogeneity of the iα  and ,g iρ  parameters plays a 

crucial role in this respect.9 As shown by equation (6b), these terms largely determine the 

acreage choice elasticities. The larger they are, the more acreage choices are responsive to 

economic incentives. The ,k iχ  parameters represent short run fixed costs. 

Note also that the interpretation of iC  given above relies on the theoretical background 

given in Carpentier and Letort (2013). In empirical applications, the parameters of this 

function may also capture the effects of other diversification motives of crop acreages. 

E.g., it may partly capture the effects of risk spreading motives (Chavas and Holt, 1990) or 

of crop rotations (Howitt, 1995). This provides further arguments for its specification 

based on farm specific parameters. In particular, farmers may have heterogeneous attitudes 

toward risk, financial constraints or personal wealth levels. This basically implies that the 

empirical estimates of the iC  functions need to be as reduced form functions capturing 

various diversification acreage motives while accounting for the heterogeneity of the 

effects of these motives among the considered farmers’ population. 

Many multicrop models proposed in the literature may use more flexible functional forms 

than the one considered here (see, e.g., Chambers and Just, 1989 ; Oude Lansink and 

Peerlings, 1996 ; Moro and Skockai, 2006). As far as short run micro-economic choices 

are concerned, our viewpoint is that it may be more important to account for heterogeneity 

in the considered model than to use a highly flexible functional form for this model. 

Roughly speaking, if heterogeneity really matters it may be preferable to use a first order 

                                                           
9 The term ,g iρ  equals iα  if group g is a singleton. E.g., we have 0,i iρ α= . If 0,i iρ α=  for g ∈G  then 

equation (6b) gives the Standard MNL acreage share model and equation (11) gives the corresponding 
acreage management cost function. 
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approximation for each sampled farm rather than to use a second order approximation 

defined at the sample level. 

Due to insufficient variation of the aggregate input prices in our data set,10 it is difficult to 

separately identify the ,k iλ  and ,k iχ  parameters empirically. This explains why the 

expected gross margin used in the acreage share model (6b) is not that given by equation 

(9). The term ,k iζ  in equation (6b) is given by , , ,k i k i it k iwζ χ λ−≃ . 

Note also that the total land use constraints imply that the terms ,k iζ  and  ,k itu  are defined 

up to an additive term. The terms 0,iζ  and 0,itu  are imposed to be null to overcome this 

identification problem.11 

Additional notations are required to present the distributional assumptions defining the 

parametric model considered in the empirical application. The following system level 

vectors are obtained from the crop level parameters: ( ), :k its k≡ ∈its K , ,( : )it k ity k≡ ∈y K , 

,( : )it k itp k≡ ∈p K , ,( : )it k itv k≡ ∈v K , ,( : {0})it k itu k≡ ∈u K \ , ,( : )i k i kβ≡ ∈β K , 

,( : {0})i g i gρ≡ ∈ρ G\ , ,( : {0})i k i kζ≡ ∈ζ K\ , ,( : )t k t kδ≡ ∈δ K , and ( : )k kγ≡ ∈γ K . The 

vector ( : 2,..., )t t T≡ =δ δ contains the year specific effects on the yield supply functions. 

In order to relate the multicrop model in this section with the generic choice model in the 

preceding section, we finally define the farmer choice vector ( , )it it it≡c y s , exogenous 

variable vector ( , , )it it it itw d≡z p , error term vector ( , )it it it≡e v u  and random parameter 

vector (ln , ln , ln , )i i i i iα≡q β ρ ζ . The exogenous variable vector itz  includes the year 

dummy variable td . 

The response function r  considered in the preceding section is given by equations (6). It is 

parameterized by the random parameter vector iq . The counterpart of r  in the multicrop 

model is also parameterized by the fixed parameter vector ( , )τ ≡ γ δ . As argued in the 

preceding section, the terms itz , ite  and iq  are assumed to be mutually independent for 

1,...,t T= . Provided that the stochastic events affecting the crop production process are 

                                                           
10 As well as due to our not modeling input demands. 
11 These normalization constraints imply that the ,k iζ  and ,k itu  terms are to be interpreted as differences with 

their counterparts for crop 0. 



17 

 

unknown at the time acreage choices are made, it can be assumed that the terms itv  and itu  

are also independent for 1,...,t T= .  

As is standard for error terms, itv  and itu  are assumed to be normal with ( , )itv 0 Λ∼N  

and ( , )itu 0 Ψ∼N . The mixing distribution of the model is also assumed to be normal with  

( , )iq a Ω∼N . The covariance matrix Ω  being unrestricted this probability distribution 

imposes no restriction on the relationships among the elements of iq . Due to the log 

transformation of  iβ , iα  and iρ  in iq , these terms are indeed assumed to be jointly log-

normal. This ensures their strict positivity. 

Once again, in order to related the multicrop model considered here to the more general 

framework elements of the previous section, the distinct elements of the parameters α , Λ  

and Ψ  are collected in µ , those of a  and Ω  are collected in η, and ( , )≡θ µ η  defines the 

“full” parameter vector to be estimated. 

The inverse function of r  is required to determine the (conditional) likelihood functions of 

the considered model. The elements of itv  can easily be recovered with: 

(12a) 2 2
, , , , ,1/ 2k it k it k i k t k it k itv y w pβ δ γ −= − − + ×  

while the elements of itu  can be obtained by application of Berry’s (1994) device: 

(12b) 
( ) ( )( )

( ) ( )

1
, 0, , , , ,

,
2 1 2 1

, , , 0, 0, 0 0 0,

1
ln ln 1 ln ln

1/ 2 1/ 2

k it it i g i k it g it k i
ik it

k it k it k k it k it it it it it

s s s s
u

p w p p w p

α ρ ζ
α

β δ γ β δ γ

−

− −

 − − − × − + =  
 − + − × + + + × 

. 

The density of ic  conditional on ( , )i iz q  can be obtained by applying equations (2) and (3) 

and by using the density of normal random vectors. Let ( ; )ϕ u B  denote the density 

function of ( , )0 BN  at u. The density of ity  conditional on ( , )i iz q  is given by: 

(13a) ( | , ; ) ( ; )it i i itf ϕ=y z q µ v Λ  

and that of its  conditional on ( , )i iz q  is given by: 

(13b) ( )( )11 1
, ,( | , ; ) ( ; )gKG

it i i i g i k it itg k
f sα ρ ϕ−− −

∈ ∈
= ×∏ ∏s z q µ u Ψ

G K
. 

We obtain that: 

(13c) ( | , ; ) ( | , ; ) ( | , ; )it i i it i i it i if f f=c z q µ y z q µ s z q µ  
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thanks to the mutual independence of itv  and itu  conditional on ( , )i iz q  for 1,...,t T= . 

Finally, the random parameter vector density is given by: 

(13d) ( ; ) ( ; )i ih ϕ= −q η q a Ω . 

The basis of the estimator of the interest parameter is the likelihood function of the 

farmers’ choice sequence ic  conditional on iz  at θ  and is equal to ( | ; )i if c z θ . This 

function can be obtained by considering equations (13) and (4).  

 
3. Estimation issues 

Estimation of a random parameter model such as the one presented in the preceding section 

requires specific estimators due to its specific structure. From a theoretical viewpoint, the 

parameters of this fully parametric model can be efficiently estimated according to the ML 

principle. But the ML estimator of  θ  is practically “infeasible” because the individual 

likelihood functions, i.e. the ( | ; ) ( | , ; ) ( ; )i i i if f h d= ∫c z θ c z q µ q η q  terms, cannot be 

integrated in our case, neither analytically, nor numerically. These likelihood functions 

must be integrated with simulation methods, implying that the estimators of θ  must be 

simulated counterparts of the standard ML estimators. Furthermore, maximizing the “true” 

sample log-likelihood function, i.e. 
1
ln ( | ; )

N

i ii
f

=∑ c z θ , in θ  would be very difficult in 

practice, due to the functional form of the individual likelihood functions and due to the 

dimension of θ . Statisticians have proposed specific extensions of the Expectation-

Maximization (EM) algorithm of Dempster et al (1977)  to compute the ML estimators of 

random parameter (or mixed) models. We employ a Simulated EM (SEM) algorithm to 

compute an estimator whose asymptotic properties are basically those of the infeasible ML 

estimator of θ (see, e.g., McLachlan and Krishnan (2008) for a recent review of the 

numerous SEM algorithms proposed in the statistics literature). 

This section presents the main features of our computation strategy for our estimator of θ . 

The choice of this computation strategy, i.e. the particular design of the SEM algorithm we 

use, was mainly based on practical arguments.  E.g. other SEM algorithms may be more 

efficient from a numerical viewpoint or may require less simulations, and thus less 

computing time or power, to perform well. But this algorithm is relatively easy to code, has 
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good theoretical properties and seems to perform well in practice, at least as far as our 

limited experience proves this. Further details are available from the authors upon request. 

Our estimators are built by estimating ( | ; )i if c z θ  with simulation methods. Provided that 

the , ( )i sq ηɶ  terms are independent random draws from ( ; )h q η  for 1,...,s S= , the strong 

law of large numbers guarantees that: 

 (14) 1
,1

( | ; ) ( | , ( ); )
S

S i i i i i ss
f S f−

=
≡ ∑c z θ c z q η µɶ ɶ  

almost surely converges to ( | ; )i if c z θ  as S rises to infinity. While econometricians usually 

employ Simulated ML (SML) estimators in this context, statisticians usually prefer to rely 

on SEM algorithms to compute estimators which differ from SML estimators but which 

basically share the same asymptotic properties as S and N grows to infinity, with S rising 

faster than N  (Jank and Booth, 2003). The SML estimator of θ is obtained by directly 

maximizing the sample simulated log-likelihood function , 1
ln ( ) ln ( ; | )

N

S N S i ii
L

=
≡∑θ θ c zɶɶ ℓ , 

usually by relying on gradient-based algorithms. This maximization problem is difficult to 

solve in our empirical application because ,ln ( )S NL θɶ  is highly non linear in θ  and because 

the dimension of θ  is quite large.12  

The EM algorithm is particularly well suited to compute ML estimators in cases where the 

model of interest involves hidden variables such as random parameters. It consists in 

iterating two steps, the Expectation step (E step) and the Maximization step (M step), until 

numerical convergence. It basically replaces a large ML problem by a sequence of simpler 

maximization problems. 13 

In our case the EM algorithm involves the following density: 

(15) ( , | ; ) ( | , ; ) ( ; )i i i i i i if hκ ≡c q z θ c z q µ q η . 

                                                           
12 E.g., Train (2009) reports that the variance matrix of Gaussian mixing probability distribution is not easily 
recovered by SML estimators, leading to the restriction that this matrix is diagonal or block-diagonal in many 
empirical studies. 
13 The EM algorithm also increases the sample log-likelihood at each iteration, implying that it generally 
leads to a (local) maximum of the considered likelihood function. SEM algorithms do not necessarily 
monotonically increase the simulated sample log-likelihood due to the simulation noise. The main drawback 
of the EM algorithm is that, albeit it moves quickly into the neighborhood of ML estimator of θ , it 
numerically converges slowly within this neighborhood. 
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The term ( , | ; )i i iκ c q z θ  is the distribution function of the “complete” dependent variable 

vector ( , )i ic q  conditional on the exogenous variable iz . As a result ln ( , | ; )i i iκ c q z θ , is 

the log-likelihood function at θ  of ( , )i ic q  conditional on iz . At iteration n, provided that 

1n−θ  is the value of θ  obtained at the end of iteration 1n − , the EM algorithm iterates the 

following steps until numerical convergence: 

E stepn. Integration of the conditional expectations: 

(16) 1 1[ln ( , | ; ) | , ; ] ln ( , | ; ) ( | , ; )i i i i i n i i i i nE h dκ κ− −≡ ∫c q z θ z c θ c q z θ q z c θ q  for 1,...,i N= . 

M stepn. Update of the value of θ  with: 

(17) 1arg max ( | )n N nQ −≡ θθ θ θ  where 1 11
( | ) [ln ( , | ; ) | , ; ]

N

N n i i i i i ni
Q E κ− −=

≡∑θ θ c q z θ z c θ . 

The E step thus consists in integrating the individual log-likelihood functions 

ln ( , | ; )i i iκ c q z θ  over the ex post density 1( | , ; )i i i nh −q z c θ . This integration yields the 

expectation of  log-likelihood function at θ  of the “complete” dependent variable vector of 

farmer i conditional on what is known on this farmer, i.e. ( , )i iz c , and assuming that 1n−θ  is 

the true value of the interest parameter. The updated value of  nθ  is then defined as an ML 

estimator of based on the individual expected log-likelihood functions computed in the E 

step. 

Equation (15) is specific to models involving hidden variables. It is used to split the M 

step into two maximization problems: 

(18a) 11
arg max [ln ( | , ; ) | , ; ]

N

n i i i i i ni
E f −=

≡ ∑µµ c z q µ z c θ  

and: 

(18b) 11
arg max [ln ( ; ) | , ; ]

N

n i i i ni
E h −=

≡ ∑ηη q η z c θ  

where ( , )n n n≡θ µ η . Basically, the parameters of the “behavioral model” on the one hand, 

and those of the “mixing” model on the other hand can be separately updated. In our case, 

the elements of nη  are defined as empirical means and covariances.  

Of course, the expectations in equations (16)–(18) cannot be computed neither analytically, 

nor numerically. The EM algorithm described above would lead to the infeasible ML 

estimator of nθ . The SEM algorithms were proposed to extend the use of the EM 
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algorithms in cases where the Expectation step requires integration by simulation 

methods.14 

Our estimates were computed by using an algorithm in the class of the SEM algorithms 

proposed by Delyon et al (1999). These algorithms, designated as the Stochastic 

Approximation EM (SAEM) algorithms, have two main advantages. First, they are 

numerically stable despite their relying on integration by simulation methods at each of 

their iterations. Second, they allow using simplified versions of the M step. The M step 

presented in equations (17) defines nθ  as the maximand in θ  of 1( | )N nQ −θ θ . Indeed, nθ  

can just be defined as a value of θ  such that 1 1 1( | ) ( | )N n n N n nQ Q− − −>θ θ θ θ , i.e. such that nθ  

simply increases the value of 1( | )N nQ −θ θ  from 1 1( | )N n nQ − −θ θ .15 We used the 

simplification of the M step proposed by Meng and Rubin (1993), i.e. the sequence of 

Conditional Maximization (CM) steps of their Expectation–Conditional Maximization 

(ECM) algorithm. The proposed algorithm only involves simple arithmetic operations, i.e. 

the ones required to compute empirical means and OLS estimators. Finally, the 

expectations in equation (18) were integrated by using the simulator proposed by Train 

(2007, 2008). 

Our detailed estimation procedure is available upon request. We briefly present Train’s 

simulator because it was used to estimate the conditional expectations in equations (16)–

(18) as well as to calibrate the farmer’s specific parameters in our empirical application, 

the complete algorithm used to compute the estimates of the empirical application being 

available upon request. 

Train’s simulator allows estimating the expectation of any function τ  of ( , , )i i iq z c , 

( ) ( , , )i i i i iτ τ≡q q z c , integrated over the ex post density of the random parameters 

                                                           
14 Note that equations (4) and (5) show that the integration problems encountered either when using the EM 
algorithm or when considering direct ML procedures have the same root, i.e. it is difficult to compute 

( | , ; )i i ih q z c θ  because it is difficult to compute( | ; )i if c z θ . 
15 In their seminal article, Dempster et al (1997) also considered this extension of the standard M step to 
define an extension of the standard EM algorithm which they designated as the Generalized EM (GEM) 
algorithm. 
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( | , ; )i i ih q z c θ  by simply using independent random draws from their ex ante density 

( ; )h q η , i.e. by using the , ( )i sq ηɶ  draws.16  Equation (5) allows showing that: 

(19) [ ( ) | , ; ] ( ) ( | , ; ) ( ) ( ) ( ; )i i i i i i i i i iE h d h dτ τ ω τ≡ =∫ ∫q z c θ q q z c θ q θ q q η q , 

The strong law of large numbers then ensures that: 

(20a)   1
, ,1

[ ( ) | , ; ] ( ) ( ( ))
S

S i i i i i s i i ss
E Sτ ω τ−

=
≡ ∑q z c θ θ q ηɶ ɶ ɶ  

where: 

(20b) ,
, 1

,1

( | , ( ); )
( )

( | , ( ); )

i i i s
i s S

i i i ss

f

S f
ω

−
=

≡
∑

c z q η µ
θ

c z q η µ

ɶ
ɶ

ɶ

 

almost surely converges to [ ( ) | , ; ]i i i iE τ q z c θ  as S rises to infinity. The use of the weight 

terms , ( )i sω θɶ  show that Train’s simulator can be interpreted as an importance sampling 

simulator with ( ; )ih q η  as the proposal density. This proposal distribution clearly is 

inefficient, i.e. if iq  exhibits significant variability then ( ; )ih q η  is unlikely to be close to 

( | , ; )i i ih q z c θ , but the simplicity of the proposed algorithm allows using very large 

random draw numbers for approximating ( | ; )i if c z θ . 

 
4. Empirical application 

As an illustrative application of the approach proposed in this paper to account for farm 

heterogeneity, we use a set of French data to estimate the multicrop model presented in the 

second section. These estimations allow an investigation of the distribution of the random 

parameters of the model, which comes to illustrate the importance of unobserved 

heterogeneity in farmers’ production choices. Based on these estimation results, we 

perform a “statistical calibration” of the model parameters for each sampled farmer in 

order (i) to evaluate the performances of the estimated model and (ii) to reveal some 

                                                           
16 Such expectations can be integrated by using draws from ( | , ; )i i ih q z c θ  which are more difficult to obtain. 

E.g., it is always possible to obtain Metropolis-Hastings random draws from ( | , ; )i i ih q z c θ . But this 

simulation technique consists in a rather long process to be repeated at each iteration of the SEM algorithm. 

Train’s simulator appears to be much more convenient. Random draws from ( ; )ih q θ  are easily obtained with 

random draws from the standard uniform distribution. Furthermore, the same draws from ( ; )ih q θ  can be 

used for each farmer for an iteration and/or the random draws from the standard uniform can be re-used to 

compute the draws from ( ; )ih q θ  along the SEM algorithm. 
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potential determinants of the heterogeneity in farmers’ behaviors. We then perform some 

simulations in order to study the impacts and potential implications of the modeling of 

heterogeneous behaviors on simulation results. 

 

4.1. Data 

The data set used to estimate our model is a panel data sample of 391 observations of 

French grain crop producers in the large (geological) Paris basin over the years 2004 to 

2007, obtained from the Farm Accountancy Data Network (FADN). It provides detailed 

information on crop production for each farm: acreage, yield and price at the farm gate. 

The aggregated input price index is made available at the regional level by the French 

Department of Agriculture. 

In our application yield levels and acreage share choices are considered for three 

(aggregated) crops: soft wheat (crop 1), other cereals (mainly barley and corn, crop 2) and, 

oilseeds (mainly rapeseed) and protein crops (mainly peas) (crop 0). Crop aggregates are 

based on agronomic considerations. The basic rotation scheme of the French grain 

producers is a sequence with three crops as: rootcrops (e.g. potato or sugar beet) or protein 

crop or oilseed (e.g. rapeseed or sunflower) – winter wheat – secondary cereal (e.g. barley 

or wheat). This scheme is adapted to soil and climatic conditions. Rootcrops require good 

quality soils which are found in the north of France. Sunflower is grown in the south of 

France while rapeseed, the other main oilseed crop is grown in the north of France (our 

region of interest). Sugar beet and potato acreages were considered exogenous due to 

production quotas for sugar beet and production contracts for potatoes. 

The considered sample only includes observations with strictly positive acreages. This 

selection rule doesn’t lead to significant attrition thanks to the crop aggregation procedure.  

Our sample covers the French regions specialized in grain production, with the notable 

exception of the south-west of France where corn monoculture is the dominant cropping 

system. Farms are observed for 3 years on average. We assume that farms’ attrition is 

exogenous. The French FADN is constructed as a rotating panel seeking to collect data for 

4 years for each sampled farm.  Such an attrition is easily accommodated in our modeling 

framework. Farms’ likelihood functions are computed according to the observed choice 

sequences. 
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4.2. Estimation Results 

Our estimations are conducted by using the SAS software and applying the procedure 

presented in the third part of the paper. The recursive step of simulation of SAEM 

algorithm is implemented using 1000 draws. The algorithm converges without difficulties 

after 244 iterations. Results were not significantly affected by the use of alternative starting 

values or the use of larger number of draws.   

Selected estimation results are reported in Table 1 and Table 2, the complete results being 

available from the authors upon request. These results show that the model fits relatively 

well to the data. Indeed, most parameters, especially the expectations and covariances of 

the random parameters  and the variance matrices of the error terms appear to be precisely 

estimated. The fixed parameters representing price ( γ ) and time (δ ) effects appear to be 

less precisely estimated. This is due to a lack of variation in crop prices in the period 

covered by our data: price effects on yields can hardly be distinguished from time-related 

effects. Since climatic events are the main sources of yield variations from one year to 

another, this issue could be overcome by introducing climatic variables in the model. This 

is however not the central in the present study, which aims at exploring the heterogeneous 

determinants of farmers’ behaviors. Indeed, even if price and climatic effects are not 

separately identified, our estimation account for their joint impact on yields; there is thus 

no reason for the introduction of climatic variables to change the results of the estimations 

of  the random parameters distribution.  

The yield equation parameters (reported in Table 1) are precisely estimated. This was 

expected since each yield equation basically is a regression equation with individual 

random terms. The parameter estimates lie in reasonable ranges. The estimates of the 

probability distribution of iβ  show that the ,k iβ  parameters significantly vary across farms 

while being strongly positively correlated to each other. This was expected because yield 

potentials vary across regions, and because good growing conditions for a grain crop are 

also good for the others. The variance of ,k iβ  is higher or close to that of ,k itv  for wheat and 

other cereals, but the variance of ,k itv  is twice that of error terms in the oilseeds case. This 

may reflects at least two points: first, a large part of the heterogeneity in cereals, and 
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notably wheat, yields is due differences in unobservable characteristics of each farm or 

farmer; second, provided that rapeseed is by far the most important oilseed in northern 

France, these results may be due the fact that the rapeseed yield is more risky than the 

cereal yield, mostly due to bugs and diseases.  

The acreage share equation parameter estimates (reported in Table 2) also range in 

reasonable ranges. The estimated expectation of ln iα , respectively of ln iρ , equals -2.357, 

respectively -2.186. Importantly, the estimate of the expectation of iρ  is higher than that of 

iα . This is a sufficient condition for the entropic acreage management cost function, lying 

at the root of the Nested MNL acreage share function, to be convex. According to the 

estimates of their respective variances, the iα  and iρ  parameters significantly vary across 

farms. This result is important for simulation studies because these parameters largely 

determine acreage price elasticities in MNL acreage share models. The higher iα  and iρ  

are, the more reactive the acreages are to price changes. The elements of iβ  appear to be 

positively correlated with iα . A possible interpretation of this result is as follows. High 

levels of iβ  indicate good farming conditions for grain crops in farm i  and/or farmer i  

technical ability. This implies that the farm operation is sufficiently profitable to allow 

suitable machinery investments which, in turn, implies a high level of iα  and, finally, 

relatively unconstrained acreage choices between cereals and oilseeds. The results are 

different when it comes to acreage adjustments within the cereal nest: the elements of iβ  

are not positively correlated with iρ , which tends to show that the flexibility of acreage 

adjustments between wheat and other cereals is associated to other factor than the one 

advocated previously.  

 

4.3. Statistical calibration of individual parameters 

As explained in the first part of the paper, the estimated parametric model allows a 

computation of the (random) iq  parameters for each farm/farmer of the sample, according 

to the logic “tell me what you do, I'll tell you who you are”.  Once the ex ante distribution 

of iq in the population has been estimated we “statistically calibrate” the specific 
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parameters for each individual i  based on the ex post density of iq , that is conditional on 

observed farmers’ responses to economic incentives. The ex post and ex ante density of 

selected random parameters (iβ , iα  and iρ ) are represented on Figure 1. The two 

distributions almost superimposed for all parameters, which reflects a good specification of 

our model (Train, 2007). We can also notice that the distributions of the iβ  parameters, 

representing maximum potential yields of the farms, appear to be more spread for other 

cereals than for the two other crops, reflecting a higher heterogeneity of yields between 

farms for that crop. That might be due to the fact that “other cereals” is an aggregate of 

various crops (mainly corn and barley), whereas “wheat” is a single crop and “oilseeds” is 

essentially composed of rapeseed in our sample. The iα  and iρ  parameters exhibit right-

skewed distribution. The two distributions reflects the fact that iα  parameters generally 

take lower values than iρ  parameters (this is actually the case for 73% of the 

farms/farmers, the remaining 27% individuals having iρ  values almost equal to iα  

values), which reflects more flexible adjustments between wheat and other cereal acreages 

than between oilseeds and other crops and is a sufficient condition for the acreage 

management cost function to be convex. 

Figure 2 reports the calibrated values of the iβ , iα  and iρ  parameters together with their 

confidence intervals for each farm/farmer of the sample. We can see from these graphs that 

confidence intervals of parameters do not overlap for all individuals: these parameters do 

actually take different values from one individual to another. This comes to illustrate the 

heterogeneity in potential yields across farms and in the way farmers are able to adjust 

their acreages in response to economic incentives.  

Having calibrated individual parameters for each farm/farmer, we are able to compute the 

individual yields and acreages predicted by the NMNL model. Based on these predictions, 

we can then compute “pseudo2R ” criteria corresponding to the share of the variance of 

interest variables predicted by the model, and compare the average observed values of 

these variables to their predicted values. These fitting criteria of the model are reported in 

Table 3 below. Once again, the model proves to fit well the data, especially for wheat and 

other cereals with “pseudo2R ” around 60% for yields and 70% for acreage shares, and 
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observed and predicted average values very close one to each other for all interest 

variables. 

Up to this point, we have demonstrated that farmers’ behaviors do actually rely on 

heterogeneous determinants which are not explicitly introduced in the model used to 

represent their production choices. It thus seems crucial to account for heterogeneity in 

micro econometric production choice models. If the sources of this heterogeneity were 

known to econometricians, they could be controlled for through, for instance, the use of 

control variables17.  However, if some of them are identifiable, heterogeneity sources are 

multiple and most of them can certainly not be reduced to farm/farmers’ observable 

characteristics. This point is illustrated by Figure 3 and Table 4. 

 Maps reported on Figure 3 show the calibrated values of three parameters: ,k iβ  for wheat, 

iα  and iρ 18 for each farm of our sample. The top left map clearly shows that the 

distribution of potential wheat yields exhibits a spatial pattern, the highest yields being 

located in the North of France. This is in total accordance with what is known about the 

different agronomic potentials of French regions. Introducing spatial farm characteristics in 

the model could help accounting for some heterogeneity. Farms’ localization is however 

not the only source of heterogeneity in agricultural production choices. This is reflected by 

the two other maps on Figure 3: the distribution of the iα  and iρ  parameters across space 

is different from that of the ,k iβ  parameters. No specific spatial pattern seems emerge from 

these maps.  

In a further attempt to qualify the potential sources of farmers’ behaviors heterogeneity, we 

have computed the correlation between the values of individual parameters and some 

observable farms/farmers characteristics considered as exogenous in the model: the amount 

of farm capital, the root crops acreage and the age of farmer19. Farm capital is positively 

and significantly correlated with the ��,�  parameter for oilseed, the �� parameter, and to a 

lesser extent the ��,� parameter for wheat. This reflects one argument previously 

advocated: farms endowed with more capital are the more productive ones and also own 

                                                           
17 Of course the use of control variables is allowed in our modeling approach. But it is omitted for simplicity 
as well as for investigating the potential of random parameter models. 
18 Maps corresponding to other parameters are available from the authors upon request 
19 Other variables such as the number of labor hours or the total acreage of the farm have been tested but 
none of them were significantly correlated to any of the individual parameters. 
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enough machinery to easily adjust their acreages. Different explanations can lie at the root 

of the positive and significant correlations between root crop acreage and the ��,�	 and �� 

parameters: root crops are good preceding crops for wheat and other cereals which 

explains the positive correlation with their potential yields; furthermore, a good soil quality 

is necessary to grow root crops and this good quality also benefits to other crops like wheat 

and other cereals but also oilseeds, hence the positive correlation with all the ��,� 

parameters; finally, root crops can be used as an alternative to oilseeds as preceding crops 

for wheat and other cereals and thus relax some constraints on acreage adjustments which 

translates into a positive correlation with the �� parameters. The positive and significant 

correlations between farmers’ age and potential yields might be due the role played by 

experience in farmers’ skills and abilities.  

All the aforementioned exogenous variables could thus help controlling for part of farm 

heterogeneity in our production choice model. However, none of the correlations presented 

in Table is high enough to conclude that using these control variables would be sufficient 

to capture all the sources of heterogeneity.   

 

4.4.Simulation Results 

This last subsection is devoted to the presentation of some simulation results: we simulate 

the impacts of changes in crop prices corresponding to those that have been observed in 

France since 2007, namely a 20% in wheat and other cereal prices and a 50% increase in 

oilseeds prices.  

As mentioned in section 4.2, the γ  and δ  parameters representing the effects of price and 

time on yields are not very precisely estimated. Therefore, we focus here on the impacts of 

price changes on acreages and assume that these shocks do not impact yields, which are 

thus held constant in the simulations.  

Table 5 reports the distribution characteristics of the elasticities of acreages to changes in 

crops prices in our sample. These elasticities are key parameters determining farmers’ 

responses to price shocks. We can first notice that all these calibrated elasticities have the 

expected signs: own price elasticities are positive and cross price elasticities are negative. 

They also lie in a reasonable range and reflect the higher flexibility of acreage adjustments 

within the cereal nest: wheat (respectively other cereals) acreage responds more to a 
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change in other cereals (respectively wheat) price than to a change in oilseed price. 

Furthermore, the reported quantiles values reflect a great dispersion of elasticities within 

our sample. One can thus expect each farmer to react differently to the price changes we 

simulate here, which is not surprising given the variances of the model random parameters.    

The first column of Table 6 reports the effects on acreages of the changes in crop prices 

simulated using our “statistically calibrated” individual parameters model. The relative 

increase of oilseeds price compared to wheat and other cereals prices lead farmers to 

reallocate part of their land to this now more profitable crop: among the 10168 ha devoted 

to crops in our sample, 159 ha of wheat (representing 4% of the initial wheat acreage) and 

183 ha of other cereals (representing 6% of the initial other cereals acreage) are reallocated 

to oilseeds which acreage thus increases by 342 ha (representing 12% of the initial oilseeds 

acreage). This represents average variations of 2 ha, 2 ha and 4 ha for respectively wheat, 

other cereals and oilseeds acreage. However, these variations greatly vary from one farm to 

another: the increases in oilseeds acreage notably vary between 1 ha and 13 ha in absolute 

term, and between 3% and 38% of the initial oilseeds acreage, depending on the farm. 

These contrasting results come to illustrate the heterogeneity in farmers’ response to 

economic incentives.  

In order to further assess the potential impacts of the approach proposed here to account 

for heterogeneity on the overall simulated effects of price changes, two alternative versions 

of the NMNL model have been estimated and used to simulate the same shock. In the first 

model, all parameters are fixed. This model is estimated using a Maximum Likelihood 

approach. In the second model, the α  and ρ  parameters, representing the flexibility of 

acreages adjustment, are fixed, the iβ , and iζ  are random. This last model can thus be 

considered as fixed individual effect model. It is estimated using the SAEM algorithm. The 

estimation results of these two models are presented in Table 7. The main elements that 

come out of these results are that (i) we encounter the same problem to indentify the price 

effects as with the random parameter model: here the γ  and δ  parameters are even not 

significantly estimated; (ii) in the fixed effect model, the estimated values of α  and ρ  are 

closed to estimated their expectation values in the random parameter model ( 0.100α =⌢  

and ˆ 0.122ρ = ), which is not the case with the fixed parameter model where α⌢  and ρ̂  

respectively equal to 0.017 and 0.045; (iii) the log likelihood of the fixed effect and fixed 
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parameter model respectively equal to -1005.4 and -940.27, compared to -816.35 for the 

random parameter model: the log likelihood ratio test thus clearly indicates that the random 

parameter model significantly better fits the data than the fixed parameter model (

2 378χ = , DF=28) and the fixed effect model (2 248χ = , DF=13) at the 1% level.    

The impacts of price changes on acreages simulated with these two models are reported in 

the second and third column of Table 6. The overall impacts on acreages are clearly 

underestimated with the fixed parameter model: the changes in wheat, other cereals and 

oilseeds acreages are respectively equal to -44 ha, -3 ha and +48 ha, which represent 72% 

to 98% lower effects than the ones simulated with random parameter model. This can 

certainly essentially be attributed to the lower estimated values of α  and ρ . However, 

despite α⌢  and ρ̂  values close to their “expectation equivalent” in the fixed effect model, 

overall simulated impacts also tend to be underestimated in this model, even if to a lesser 

extent (2% to 40% lower effects). One possible explanation is that farmers owning more 

land are also the ones that have the more flexibility in acreage adjustments, hence the 

largest simulated global acreage variations when the heterogeneity in α  and ρ  is taken 

into account.  These results are clearly illustrated on Figure 4 which reports the individual 

simulated effects on oilseeds acreage using the three models and taking the random 

parameter model as reference: the higher the impacts on oilseeds acreages are, the more 

they are underestimated by the two alternative models. There is thus a risk, by partially or 

totally ignoring the heterogeneous determinants of farmers’ behaviors in micro 

econometric models, to generate biased simulation results.    
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Conclusion 

Many unobserved heterogeneous factors can impact farmers’ production decisions. The 

approach we propose in this paper allows accounting for this heterogeneity in the 

econometric estimations of agricultural production models in a fairly flexible way. We rely 

on a random parameter modeling framework: the distribution of the model parameters 

across the farmer population is estimated, which allows the parameters to be farmer 

specific in order to account for unobserved heterogeneity effects.  

Using specific estimators and optimization procedures designed by statisticians, we are 

able to estimate a random version of the multicrop econometric model proposed by 

Carpentier and Letort (2013). This empirical application is based on a sample of French 

crop producers observed from 2004 to 2007. We find that the key parameters of the model 

exhibit significant variability across farmers. Furthermore, our random model proves to 

better fit the data than its counterpart fixed or “quasi-fixed” versions. We thus find 

evidence that heterogeneity significantly matters for the modeling of micro-economic 

agricultural production choices.  

We also show how random parameter models can be used to “statistically calibrate” a 

simulation model based on a sample of heterogeneous farms and use this “calibrated” 

model to simulate the impact of crop price changes on acreages. This allows us to further 

illustrate the potential role of heterogeneity in micro econometric production choices 

models, and to show that ignoring it can lead to misleading simulation results.  
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Tables and Figures  

Table 1: Selected parameter estimates, yield equation (standard deviations in parentheses) 

 
k

γ  
,

[ ]
k i

E β  
, ,

[ ],
k i l i

Cov β β  
,

[ ]
k it

Var v  

   Wheat Cereals Oilseeds  

   ( 1l = ) ( 2l = ) ( 0l = )  

Wheat ( 1k = ) 0.710 7.952 0.992 0.807 0.555 0.595 

 ( 0.120) (0.051 ) (0.077) (0.073) (0.046) (0.044 ) 

Cereals ( 2k = ) 0.140 7.167 0.807 1.215 0.509 1.077 

 (0.101) (0.056) (0.073) (0.098 ) ( 0.048) (0.079 ) 

Oilseeds ( 0k = ) 0.174 5.265 0.555 0.509 0.428 0.852 

 (0.110) (0.034) (0.046) (0.048 ) (0.034 ) ( 0.062) 

Note: standard errors are in parentheses 

 

 

Table 2: Selected parameter estimates, acreage share equation (standard deviations in parentheses) 

 Expectation Covariances with 

  ln
i

α  ln
i

ρ  
1,

ln
i

β  
2,

ln
i

β  
0,

ln
i

β  

    Wheat Cereals Oilseeds 

ln
i

α  -2.357 0.196 0.112 0.008 0.019 0.010 

 ( 0.023) (0.015 ) ( 0.014) ( 0.003) (0.004) (0.003) 

ln
i

ρ  -2.186 0.112 0.279 -0.012 0.007 -0.005 

 ( 0.027) ( 0.014) (0.022) (0.004) (0.005) (0.004) 

Note: standard errors are in parentheses  

 

 

 

Table 3: Fitting criteria of the model 

 
Yields kity  Acreage shares kits  

 “pseudo
2

R ” 
Observed 

average 

Predicted 

average “pseudo
2

R ” 
Observed 

average 

Predicted 

average 

Wheat ( 1k = ) 73.80% 7.93 7.91 79.89% 0.45 0.46 

Cereals ( 2k = ) 65.38% 7.78 7.74 84.79% 0.30 0.30 

Oilseeds ( 0k = ) 51.66% 5.73 5.72 56.56% 0.24 0.25 
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Table 4: Correlations between random parameter values and farmers’ characteristics 

 
,k i

β  

Wheat 
,k i

β  

 Other cereals 
,k i

β   

Oilseeds 
i

α  
i

ρ  

Farm capital 0.172 0.126 0.262 0.165 0.003 
 (0.079) (0.200) (0.007) (0.092) (0.973) 
Root crop acreage 0.310 0.195 0.296 0.407 -0.027 
 (0.001) (0.059) (0.002) (<0.001) (0.781) 
Farmer’s age 0.308 0.206 0.282 0.157 -0.242 
 (0.001) (0.035) (0.004) (0.111) (0.013) 
Note: P-values are in parentheses 

 

 

 

Table 5: Characteristics of the distribution of acreage shares price elasticities  

 Average Q5 Q25 Q50  Q75  Q95  

Wheat Acreage       

Wheat Price 0.43 0.24 0.32 0.39 0.49 0.77 

Other cereals Price -0.25 -0.61 -0.29 -0.18 -0.15 -0.11 

Oilseeds Price -0.14 -0.24 -0.16 -0.13 -0.11 -0.08 

Other cereals acreage       

Wheat Price -0.48 -1.19 -0.67 -0.36 -0.23 -0.14 

Other cereals Price 0.61 0.22 0.33 0.49 0.79 1.33 

Oilseeds Price -0.14 -0.24 -0.16 -0.13 -0.11 -0.08 

Oilseeds acreage       

Wheat Price -0.37 -0.84 -0.45 -0.31 -0.20 -0.13 

Other cereals Price -0.23 -0.67 -0.29 -0.17 -0.10 -0.05 

Oilseeds Price 0.50 0.17 0.31 0.43 0.65 0.95 

 

 

 

 

  



34 

 

Table 6: Simulated impacts on acreages of the price shock  

 Random parameter model Fixed parameter model Fixed Individual effects model 

Wheat Acreage    

Total change in ha -159 (-3.9%) -44 (-0.9%) -96 (-2.2%) 

Average change in ha -2 (-4.5%) -1 (-0.9%) -1 (-2.3%) 

Max change in ha <0.5 (<0.1%) 1 (+0.6%) 1 (+1%) 

Min change in ha -7 (-17.0%) -2 (-2.4%) -5 (-9.3%) 

Other cereals Acreage    

Total change -183 (-5.6%) -3 (-0.1%) -178 (-4.7%) 

Average change  -2 (-6.3%) <0.5 (-0.1%) -2 (-5.1%) 

Max change +2 (+11.7%) 1 (+1.8%) <0.5 (<0.1%) 

Min change  -8.8 (-20.0%) -1 (-2.7%) -8.8 (-20.0%) 

Oilseeds acreage    

Total change +342 (+12.1%) +48 (+2.4%) +274 (+12.8%) 

Average change  +4 (+13.9%) +1 (+2.4%) +3  (+12.8%) 

Max change +13 (+38.2%) +1 (+4.0%) +9 (+21.8%) 

Min change  1 (+3.1%) <0.5 (+1.1%) +1 (+4.5%) 

Note: Numbers in parentheses correspond to %age changes compared to initial acreages 
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Table 7: Results of the three models  

Parameters 
Model1 

(All parameters are fixed) 
Model2  

(α and ρ are fixed)         
Model3 

(Random parameters 
Model) 

1ln β  1.972    (0.008) 2.085    (0.004) 2.066  (0.006) 

2ln β  2.123    (0.009) 1.956    (0.005) 1.958   (0.007) 

0ln β  1.645    (0.011) 1.579    (0.004) 1.653   (0.006) 

lnα  -4.502   (0.021) -2.303    (0.033) -2.357  (0.023) 

ln ρ  -3.351   (0.033) -2.104    (0.019) -2.186  (0.027) 

1ζ  -94.887 (3.072) -4.431    (0.098) -4.015  (0.141) 

2ζ  -77.982  (3.380) -1.752   (0.152) -1.722  (0.130) 

1γ  -0.562    (0.091) 0.942   (0.138) 0.710   (0.120) 

2γ  1.453     (0.095) 0.133    (0.114) 0.140   (0.101) 

0γ  -0.045    (0.109) -0.456   (0.130) 0.174   (0.111) 

1,2004δ  1.131     (0.137) 1.052    (0.155) 1.078   (0.129) 

1,2005δ  0.247     (0.106) 0.292    (0.161) 0.296   (0.151) 

1,2006δ  -0.050   (0.133) 0.190    (0.130) 0.154   (0.121) 

2,2004δ  0.863     (0.143) 1.253    (0.160) 1.248   (0.135) 

2,2005δ  0.644  (0.140) 0.764    (0.253) 0.767   (0.162) 

2,2006δ  0.458  (0.156) 0.422    (0.125) 0.429  (0.132) 

0,2004δ  1.061  (0.115) 1.163    (0.146) 1.078  (0.131) 

0,2005δ  0.816  (0.103) 0.885    (0.130) 0.844  (0.180) 

0,2006δ  0.031 (0.09) 0.043    (0.184) 0.047 (0.147) 

1,1Λ  1.496  (0.116) 0.587    (0.032) 0.595 (0.044) 

1,2Λ  0.945 (0.102) 0.213    (0.041) 0.217  (0.043) 

1,3Λ  0.704 (0.077) 0.153    (0.042) 0.162  (0.038) 

2,2Λ  2.188   (0.168) 1.074    (0.061) 1.077 (0.079) 

2,3Λ  0.647 (0.091) 0.143    (0.058) 0.159  (0.050) 

3,3Λ  1.277  (0.114) 0.831    (0.060) 0.852 (0.062) 

1,1Ω  --- 0.0156  (0.0007) 0.016   (0.0012) 

1,2Ω  --- 0.0143  (0.0009) 0.014   (0.0012) 

1,3Ω  --- 0.0138   (0.0007) 0.013   (0.0010) 

1,4Ω  --- --- 0.008   (0.0029) 

1,5Ω  --- --- -0.008  (0.0037) 

1,6Ω  --- -0.1559  (0.0123) -0.084  (0.0181) 

1,7Ω  --- -0.1060  (0.0195) 0.027   (0.0157) 
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2,2Ω  --- 0.0239   (0.0013) 0.023   (0.0017) 

2,3Ω  --- 0.0148   (0.0009) 0.013  (0.0012) 

2,4Ω  --- --- 0.019   (0.0038) 

2,5Ω  --- --- 0.007  (0.0045) 

2,6Ω  --- -0.1738  (0.015) -0.062   (0.0221) 

2,7Ω  --- -0.1488  (0.022) 0.010  (0.0191) 

3,3Ω  --- 0.0179   (0.00083) 0.015  (0.0012) 

3,4Ω  --- --- 0.010  (0.0030) 

3,5Ω  --- --- -0.005  (0.0037) 

3,6Ω  --- -0.1668   (0.0134) -0.088  (0.0184) 

3,7Ω  --- -0.0543    (0.0202) 0.029   (0.0159) 

4,4Ω  --- --- 0.196   (0.0147) 

4,5Ω  --- --- 0.112   (0.0142) 

4,6Ω  --- --- 0.062   (0.0605) 

4,7Ω  --- --- -0.126  (0.0543) 

5,5Ω  --- --- 0.279   (0.0217) 

5,6Ω  --- --- -0.409  (0.0802) 

5,7Ω  --- --- 0.421  (0.0721) 

6,6Ω  --- 7.767    (0.417) 7.408  (0.5327) 

6,7Ω  --- -6.0536  (0.573) -5.709  (0.4352) 

7,7Ω  --- 19.349    (0.997) 6.239  (0.4150) 

Log Likelihood -1005.356 -940.270 -816.352 

Likelihood ratio test: 
H0: Model1 

--- 130.172 
DF=15 

378.008 
DF=28 

Likelihood ratio test: 
H0: Model2 

--- --- 247.836 
DF=13 

Note: standard errors are in parentheses  
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Figure 1: Ex post and ex ante distribution of random parameters 
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Figure 2: Calibrated values and confidence intervals of individual parameters 
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Figure 3: Distribution of selected random parameters across the population sample  
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Legend 

   

 

 

 

Figure 4: Comparison of the impacts on oilseeds acreage simulated with the different models 

 

  

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Random parameters model: Simulated individual changes in oilseeds 

acreage (ha)

fixed individual effects model fixed parameters model bissectrix



40 

 

References 
 
Ackerberg. D., Benkard. L., Berry S., Pakes A., 2007. Econometric Tools for Analyzing 
Market Outcomes. In J.J. Heckman and E.E. Leamer. eds., Handbook of Econometrics. 
vol. 6A. Amsterdam. Elsevier. 

Berry. S. T., 1994. Estimating Discrete-Choice Models of Product Differentiation. RAND 
Journal of Economics.  25, 242-262.  

Caffo, B. S., Jank W., Jones G. L., 2005. "Ascent-based Monte Carlo expectation–
maximization." Journal of the Royal Statistical Society: Series B (Statistical Methodology). 
67.2, 235-251. 

Caponi V., 2011. Intergenerational transmission of abilities and self-selection of mexican 
immigrants. International Economic Review. 52(2), 523-547. 

Carpentier A., Letort E.,  2013. Multicrop production models with Multinomial Logit 
acreage shares. Environmental and Resource Economics. (2013), 1-23. 

Carpentier A., Letort E., 2012. “Accounting for heterogeneity in multicrop micro-
econometric models: Implications for variable input demand modelling.” American 
Journal of Agricultural Economics. 94(1), 209–224. 

Chambers R., Just R., 1989. Estimating Multiouput Technologies. American Journal of 
Agricultural Economics. 71, 980-95. 

Chavas J. P., Holt T., 1990. Acreage Decisions under Risk: The Case of Corn and 
Soybeans. American Journal of Agricultural Economics. 72, 529-538. 

Delyon B., Lavielle M., Moulines E., 1999. Convergence of a stochastic approximation 
version of the EM algorithm. Annals of Statistics. 94-128. 

Dempster A. P., Laird N. M., Rubin D. B., 1977. Maximum likelihood from incomplete 
data via the EM algorithm. Journal of the Royal Statistical Society Series B 
(Methodological), 1-38. 

Eaton J., Kortum S., Kramarz F., 2011. An Anatomy of International Trade: Evidence 
From French Firms. Econometrica. 79(5), 1453-1498. 

Heckeleï T., Britz W., Zhang Y., 2012. Positive mathematical programming approaches. 
Recent developments in literature and applied modelling. Bio-based and Applied 
Economics. 1(1),109-124. 

Heckeleï T., Wolff H., 2003. Estimation of constrained optimisation models for 
agricultural supply analysis based on generalised maximum entropy. European Review of 
Agricultural Economics. 30,27-50. 

Heckman J. J., 2001. Micro data. heterogeneity. and the evaluation of public policy: Nobel 
lecture. Journal of political Economy. 109(4). 673-748. 

Heckman J. J., Sedlacek G., 1985. Heterogeneity. aggregation. and market wage functions: 
an empirical model of self-selection in the labor market. The Journal of Political Economy. 
1077-1125. 

 



41 

 

Howitt E., 1995. Positive Mathematical Programming. American Journal of Agricultural 
Economics. 77,329-342. 

Jank W., Booth J., 2003. Efficiency of Monte Carlo EM and Simulated Maximum 
Likelihood in Tow-Stage Hierarchical Models. Journal of Computational and Graphical 
Statistics. 12(1), 214-229. 

Keane M. P., 2009. Simulated Maximum likelihood estimation based on FOCs. 
International Economic Review. 50(2), 627-675. 

McFadden D., Train. K., 2000. Mixed MNL models for discrete response. Journal of 
applied Econometrics. 15(5), 447-470. 

McLachlan G., Krishnan T., 2008. The EM algorithm and extensions. 2nd edition. Wiley 
Edition. 

Meng X. L., Rubin. D. B., 1993. Maximum likelihood estimation via the ECM algorithm: 
A general framework. Biometrika. 80(2), 267-278. 

Moro D., Sckokai P. 2013. The impact of decoupled payments on farm choices: 
Conceptual and methodological challenges. Food Policy. 41:28-38. 

Oude Lansink A.G.J.M., Peerlings J.H.M., 1996. Modelling the new EU cereals and 
oilseeds regime in the Netherlands. European Review of Agricultural Economics. 
23(2),161-178 

Train K., 2009. Discrete Choice Methods with Simulation (2nd ed). Cambridge: University 
Press.  

Train K., 2008. EM algorithms for nonparametric estimation of mixing distributions. 
Journal of Choice Modelling. 1(1), 40-69. 

Train K., 2007. A recursive estimator for random coefficient models. University of 
California. Berkeley. 

Wei G. C., Tanner, M. A., (1990). A Monte Carlo implementation of the EM algorithm 
and the poor man's data augmentation algorithms. Journal of the American Statistical 
Association. 85(411), 699-704. 

 

 


