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Abstract.

In this paper we rely on a random parameter approach to account for the
unobserved heterogeneity of farms/farmers in the estimation of production choices
model. We use a Stochastic Expectation-Maximization algorithm to estimate a
Nested Multinomial Logit model of yield and acreage choices and perform some
simulations using this model. This approach allows accounting for farms’ and
farmers’ heterogeneity in a flexible way. Our results show that heterogeneity
significantly matters in agricultural production choice models and that ignoring the
heterogeneous determinants of farmers’ choices can have important impacts on
estimation and simulation outcomes of micro econometric models. Estimates of
random parameter models such as the one presented here can be used for, at least,
two purposes: for the calibration of simulation models accounting for farm
unobserved heterogeneity and to investigate the potential explanations of this

unobserved heterogeneity.
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Introduction

Evidences of the effects of unobserved heterogerneitmicro-econometric models are
now pervasive in many applied economics fields.imrthe last two decades applied
micro-econometricians have developed tools to esémrmodels explicitly accounting for
the effects of unobserved heterogeneity on econamiices. These tools have already
been successfully used in several applied econordmsiains. Empirical studies
highlighting the role of unobserved heterogeneifgats in econometric models can be
found in labor economics, in industrial organization transportation economics or in
international trade economics.

Consumer choice models assume that consumersi@nets are heterogeneous and that
this unobserved heterogeneity has important effentproduct demands, especially for
differentiated products (see,g., Ackerberget al 2007). Wage equations are specified
accounting for the fact that workers’ abilities dreterogeneous. While unobserved, this
heterogeneity in abilities is shown to determindaege part of the observed wage
variability as well as of the returns to educat(see,e.g., Heckman and Sedlacek, 1985,
Heckman, 2001). Firm choice models account for thet that firms use different
technologies and, as a consequence, that theydifferent productivity levels and various
supply choices (see.g., Eatonet al 2011). An important point is that the effects of
unobserved heterogeneity are not simply added @onbdels considered above. These
effects also affect the responses of these modéfsgortant interest variables.

Our view is that similar heterogeneity featuresrabterize agricultural production choices.
Farms and farmers are heterogeneous and this petmity affects the way farmers
respond toge.g., economic incentives.

The objectives of this article are twofold. Firgte aim at showing that unobserved
heterogeneity effects significantly matter in engat agricultural production choice
models. Second, we aim at showing that tools récedeveloped by micro-
econometricians and statisticians allow specifticatiand estimation of econometric
agricultural production choice models accounting farms’ and farmers’ unobserved
heterogeneity in a fairly flexible way.

Farmers face different production conditions duéhéterogeneous soil quality or usual

climatic conditions across space. They also owieriht machineries and different wealth



levels. Finally, farmers are also different becao$aheir various educational level or
abilities, as well as because they may have diftepbjectives with respect to income risk
or with respect to the leisukersus labor trade-off. These heterogeneity sourcesikedy|

to have important impacts on farmers’ productiooicés.

But to control for the effects of these heteroggnsources is difficult in practice, for two
main reasons. First, as shown by the short listrgabove, potential heterogeneity sources
are numerous. Second, many heterogeneity soureesoarsuitably described in the data
sets usually used by agricultural economists. Assalt, empirical investigators generally
rely on a few variables e.g. farms’ size, farmers’ age, farmers’ educationys location

or, when available, rough soil quality indices — dontrol for the effects of many
heterogeneity sources on farmers’ production clsoides a matter of fact, numerous
important heterogeneity sources are unobserveagiacultural production modeling.
Means usually employed by agricultural productiocor@mists to cope with the
unobserved heterogeneity of farms and farmers dkepartheir modeling approaches and
purposes.

Mathematical programming models used to analyzecalgiral supply responses to
economic policies (or other determinants of farmetsoices) are usually built by
considering sets of farms, of small regions orasfii-types. A mathematical programming
model is calibrated for each element of the cometiset of “farms”. This disaggregated
calibration procedure allows controlling for farnasid farmers’ unobserved heterogeneity.
Of course the lack of statistical background of shkendard calibration procedures is often
pointed out as a major limitation of agriculturapply mathematical programming models
(Howitt 1995 ; Heckelel and Wolff 2003 ; Heckeétial 2012). However, the simulations
provided by these models appear to be highly valwedecision-makers. These provide
disaggregated results with respect to the simulatfstts of agricultural policy measures
on farmers’ choices across more or less large gpbgral areas.

By comparison, the ability of micro-econometric ratsdof agricultural production choices
to account for farms’ and farmers’ heterogeneitynisch more limited. As recalled above,
only a few control variables are usually availatdeagricultural production economists.
Standard specifications of econometric agricultysadduction choice models can be

defined as a sum of a deterministic part and oéetor of random error terms. In these



models, farmers’ responses to economic (or otheceritives are governed by the
deterministic part -+.e. by a few statistically estimated parameters — tnedeffects of
farms’ and farmers’ unobserved heterogeneity austpd” into additively separable error
terms. This often leads to simulation results wraoh unrealistically homogeneous across
farms.

The agricultural production choice models proposethis article allow accounting for
farms’ and farmers’ unobserved heterogeneity wihdang empirically tractable. They can
also be used to design simulation models in whighaeameter vector is “statistically
calibrated” for each sampled farmer.

We adopt the random parameter modeling framewadnks framework allows estimating
standard production choice models under the assomgitat the model parameters are
farmer specific. Basically, the considered moddtsnathe model of each sampled farmer
to have its own parameter vector and, thereby, peten account for unobserved
heterogeneity effects across farmers. Standardsgst@ven panel data sets, do not permit
direct estimation of the individual parameters. Tdigective of the estimation is to
characterize the distribution of the model paramsetacross the considered farmer
population.

We illustrate these points through the specificatamd the estimation of a multicrop
econometric model with random parameters. The Kaotial Logit (MNL) framework
proposed by Carpentier and Letort (2013) was chdserto its simplicity, to its parameter
parsimony and to the easy interpretation of itsapeaters. The specified model being
parametric, we rely on the Maximum Likelihood (Mitamework for its estimation. More
specifically we use estimators and optimization cpdures specifically designed by
statisticians for the estimation of a class of nt®de which random parameter models
belong.

The empirical application considers a sample ofnéhecrop producers observed from
2004 to 2007. Obtained results demonstrate thabserwed heterogeneity matters for the
modeling of micro-economic agricultural productiohoices, even within a small area.
Key parameters of farmers’ choice models are samtly affected by unobserved
heterogeneity effects.e. exhibit significant variability across farmers. \&tso show how

random parameter models can be used to “statigticalibrate” a multicrop simulation



model based on a sample of heterogeneous farmaile®iom results show that it is

important for the estimated models to allow farm&srespond heterogeneously to
homogeneous economic incentives.

The general features of random parameter modelspeegented in the first section,

together with their main advantages and limitatiohke second section presents the
multicrop econometric model that we consider ineortb investigate the advantages of
accounting for unobserved heterogeneity in agticalt production choice models.

Identification and estimation issues are discussethe third section. The estimation

results and their interpretations are providedhefourth section.

1. Unobserved heterogeneity and random parameter model
This section presents the main features of randamanpeter models of agricultural
production choices. It also introduces importaetents to be used in the presentation of
the estimation issues. We consider short run pramluchoices of farmersi-e. an acreage
(share) demand system and a yield supply systetheirempirical application — and we
take for granted that farmers’ choices rely on fogieneous determinants. We consider the
use of panel data so that observations are indéxed=1,...N (farm/farmers) and
t=1..T (year).
A random parameter model is composed of two pditte. first part of the model, the
“behavioral model” (or the “kernel model” in Tram(2007, 2008) terminology), formally
describes the causal process of interest and detmetatistical characteristics conditional
on the considered random parameters (and on thgeemas variables). Basically, the
“behavioral model” for agricultural production ches is a standard agricultural
production choice model in which some or all pareargeare chosen to be farmer specific,
which imposes an examination of the statisticatrehships between these parameters and
the other elements of the mode#, its explanatory variables and error terms.
The second part of the model defines the charatitariof the distribution of the random
parameters (conditional on the exogenous variahlesthe “mixing” distribution of the
model according to the terminology used in stafssti

The equation

1) ¢ =r@z.e;q9)



describes the production choices of farmeri in yeart as a known response functioto

the determinants of these choiqgs, e,) , whether these determinants are observed or not.
The termz, , respectivelye, , is observed, respectively unobserved. The regphumtion

r is parameterized by a farmer specific parametetovey, . Note that if the random terms
(e,,q) are unobserved to the econometrician, they argvikrto farmeri in t and partly

determine its choices through their effects.ifequation (1) is a deep structural model, or

an “all causes” model. It defines how the choicefafmeri, c , is caused by its

it
determinantgz,, e, ) up the characteristics of this farmer and of hisfeg, . Equation (1)
can be any agricultural production choice modelnehibe usual fixed parameters, at least
some of them, are replaced by farmer specific patanvectorg, !

In a short run production choice context, the randwarametersy, mainly capture the

effects of the farms’ natural or quasi-fixed facesrdowments, of the farmers’ production
technologies and of farmers’ characteristics. Therthese effects vary across farms in
the considered population, the more likely is tigridbution of g, to exhibit significant
variability.

Equation (1) is completed by statistical assumjtion order to define the “behavioral

model” of the considered random parameter modes. dissumed here thai ande, are
independent conditionally om, . l.e. it is assumed that controlling for the farms’ and
farmers’ characteristics ensures ttgtan be interpreted as purely exogenous factors —

such as market prices or climatic events — affgciammers’ choices. It is further assumed

that g, and e, are statistically independent. This assumptioresebn the idea thady,
captures the permanent unobserved characteristiasweri affectingz, while e, mostly
represents the effects of idiosyncratic shockg,pr-i.e. e, basically is a “standard” error

term.

! The functional form of can also be defined up to a fixed parameter véotbe estimated, as in our
empirical application. The response function cao alepend on available variables describing thades
or/and or their farms (these may also be includdtié vectorz, ). These extensions are straightforward and

are ignored here to reduce the notational burden.



We assume here that, (and thuse,) and g, are continuous random variables. The

behavioral model is parametric, as it is the caseour empirical application, if the

distribution of e,, denoted byn(e,), is assumed to be a member of a given parametric
distribution family. This family is characterized the densityg(e,;p,) . Of coursed(e,)
and equation (1) directly define the distributioh o, conditional on (z,,q,), i.e.

D(c, | z,,q ). Assuming that the response functions invertible in e

it

the density of
D(c, | z,,q) is given by:

F) '(—1)l'...._l D o)
det aqlr(znt 'r @It’clt 1q|)1q|) g(r elt 'Clt ’q|)1ut)'

Equation (1) and the independence assumptions ibedcabove define a “behavioral

(2 fc, 1z, am)=

model” which can be used with cross-section dati#éh Yanel data additional assumptions
are required in order to describe the eventual miynéeatures of the considered choices. It
is assumed here that the modeled choice processséntially static in the sense thgt
and e, are independent conditionally ap for any pair of yeargs;t), i.e. z, is assumed

to be weakly exogenous with respect ép according to the panel data econometrics
terminology. This condition simplifies the expositi and is assumed to hold in our
empirical application.

This application considers short-run crop productihoices and relies on a short panel
data setj.e. with T =4. These choices are modeled as static choices $®¢ha main
dynamic aspects of crop production choices argageop rotations. Such dynamic effects
can be suitably approximated by farmer specifi@paaters because crop rotation effects
imply highly persistent dynamic effects in the cqmpduction choices when farmers’ base
their production choices on a few rotation scherbsse elements also provide arguments

for assuming that the, terms are independent across

Under these assumptions the joint density of thetovec =(c,,...,G; ) conditional on
(@.2))=(0,2,,-...z; )is given by:

3) f(clz.q:n)= |_|tT:1f C 12,0 o)



wherep = (n,...,n; ). Of course, farmers’ choices are linked across time to their relying
on the same parameter vectpr. But these choices are assumed to be independe&sisa
time conditionally ong; .

According to the assumption set describe above deg’nthoice process is sufficiently
stable across time for its main feature to be eagtly parameters which are constant
across time. This assumption set can hold for stusrtchoices during a relatively small
time period. Farms and farmers’ production techgglgenerally evolve slowly over time.
This allows assuming that the parameters of the production choice model remain
constant over a few years. Short run productioncelsoare repeated each year and follow
the same scheme as long as the production technaod the quasi-fixed factor
endowment do not change.

The second part of a parametric random parametdelhatescribes the distribution of the

farmers’ specific parametersg, conditional on the observed variables. It is assumed
here thatz, and g, are independent. This independence assumptiors,heither if the
heterogeneity control variable contains the factors underlying the statisticglesfelence
of z, and q,, or if z,does not vary acrogs® It implies that one just needs a statistical
model for ®(q,) . As in the empirical application, we define a paetric model foro(q,).
This model is characterized by the dendi(y,;n) defined up to the parameter vectpr
D(q;) describes the distribution @f across the considered famers’ population. The more
the g, varies across farmers, the more heterogeneityersati model farmers’ choices.

Of course the choice of the distribution(qg;) is crucial to suitably capture the

unobserved heterogeneity effects in the consideredel. Being related to unobserved
variables, this choice basically is an empiricalis It can be based on trials with different
parametric models. Using flexible parametric modelg. finite discrete mixtures of

Gaussian models, or non parametric models appeas difficult in practice. Such models

can only be used when the dimensiorgpfis very small and with very large samples.

2 In the empirical application presented in the reedtions,z, contains price variables which mostly vary
across years and year dummies, ensuringghaind z, can be considered as independent variables.



Specification of the role ofg, in the model ofc, depends on how unobserved
heterogeneity effects are expected to affect fashofices. Standard panel data models
generally assume that the effectsepfand of e, are additively separable m with e.g.
rz,.e.q)=p(,)+q +e,. In this case the so-called “individual effeaff does not
affect the effect ok, on c,, implying homogeneous responsespfto changes irz,.

Keane (2009) discusses this point and highlightssic trade-off. Econometric models

defined as the sum of a deterministic pg&iz,) and of random termg, +e¢, are relatively

easily estimated by using semi-parametric estirsatBut such models do not suitably

account for the effects of unobserved heterogemneitgn these effects are not additively
separable in the considered response functiomsyhen %r(zn,en;qi) actually depends
on g, . Keane (2009) basically argues that the use afively involved inference tools as
well as parametric assumptions on the distributibthe random termsge,, g ) may be a

reasonable price for buying the opportunity toadtrce rich unobserved heterogeneity
effects in the considered model.

Of course, this trade-off is an empirical issue dedends on the modeled choice process.
But empirical evidences accumulated in other appdeonomics fields suggest that it is
worth investigating this trade-off for agricultunatoduction choice modeling. This is the
main object of this article with a particular focos the unobserved heterogeneity effects
on farmers’ responses to economic incentives.

The distribution of the dependent variatsleconditional on its observed determinaats
i.e. of ©(c |z), is a key concept for estimation purposes. Itasig defines the
likelihood function to be used in the ML framewoflhe density ofc, conditional onz, is
the mean of that o, conditional on(z,,q.) integrated over the distribution af; :

@ f(c1z:0)=[f@Elz.amh@mXg.

The term® = (u,,...,n; M) is the “complete” parameter vector of the consdgrarametric

random parameter model. The integral in equatigncéhnot be solved analytically in
general but this issue is ignored for the moment.
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Statistical estimates of @ allow the investigation of the distribution of thhandom

parameterq, . First, these estimates can be used to test tiprieah relevance of the
random parameter specification by checking whetheexhibits true variations or not. If

0 contains “variance parameters” then simple pamamgdsts can be used. Second, the

estimates ob can also be used to interpret the empirical cargbthe g, terms.E.g., the
statistical relations among the elements @f may suggest interpretations of their

variations.
The statistical estimates @ can also be used to “statistically calibrate” mdation
model based on the considered random parameterl.midds simulation model can be

based on estimates of the parameters for each edrigrmer. The distributiom(q;) is an
ex ante or prior distribution of the random parameter. It descrithesdistribution ofg; in
the considered farmer population. The minimum msguared error estimator af for
any farmer taken at random in the considered ptipnlgs simply the mean aofj,, E[q,].

Of course, conditioning on the information set &lde for farmeri provides more

accurate estimatese. use of the information provided [y, z) allows defining more
precise estimates af. based onp(q; |c ,z ).2 By application of Bayes' rule the density of
g; conditional on(c,, z) is given by:

®) 12,6020 2.0 00 1) where w(c,2,a:0) = 2.

This densityh(q;, | z,,¢ ;0) — which is designated as the post or a posteriori density of
g; (conditional on what is known about farmgr can be used to integréify; | c;, z],
the best predictor ofg, conditional on (c,z) according to the minimum squared

prediction error criterich
We use the term “statistical calibration” insteddestimation” to refer to the computation

of the of g, conditional on(c,z). These predictions rely orfc,z), the limited

information available on farmer and are statistical in the sense that they depend

® Even a single observatigi, , z,) for farmeri is valuable.

* Tell me what farm has chosen, I'll tell you of which kind is likety be farmei. You can trust me because
I know how farmers decide and because | know tlaeaiteristics of the farmers’ population.

11



statistical estimated as well as on the considered random parameter Imeldieh

basically is a statistical model structured bywa feicro-economic assumptions.

2. The random parameter multicrop model
The multicrop model considered here is a randorarpater version of a model proposed
by Carpentier and Letort (2013). This model combiadNested MNL acreage share model
with quadratic yield functions. This section presetihe main features of the model to be
used in the empirical application. Additional ditaielated to this model and its theoretical
background can be found in Carpentier and Let@182.
The considered multicrop model assumes that farmmepamize their expected profit in
two steps. First they maximize the expected retoreach crop under the assumption that
this return doesn’t depend on the crop acreagesin8e farmers allocate land to different
crops to maximize their expected profit providedattithey incur implicit acreage
management costs. These management costs proeatgiue for crop diversification.

The crop setk ={0,1,...,K} is partitioned into mutually exclusive crop grougsg for

g0¢={0,1...,G}.> This partition is defined to account for the faicat different crops

require different management efforts and competeeroo less fore.g., quasi-fixed input
uses. The groups are defined so that any crop denmpere in the land allocation process
with the other crops of its group than it does cetapwith crops of other groups. Group O
contains a single crop, crop 0. As shown belowp @ @lays a specific technical role in the
model.

The “behavioral” model of the considered multicropodel is an equation system

composed of a yield supply sub-system:
(6a) {yk,it =B + 6, =1/ 2%y W pl;,?t +v,, forkOx, andy= 0,1,.G

and of an acreage share sub-system:

® This partition allows defining a two-level Nestacreage choice model. Further partitioning the enaups
allows defining multi-level Nested acreage choiceledl.

12



(6b)

aipg;
e 7T (z exp(o,;7,; ))
XP(©0y, 7%t ) 0K o — forkO%, andg = 1...G
e T —
ZC/DKQ XPloy i )ZhDg (ZZ/DKh eXp(oy, 7T ))
it — p/,,it (,8“ +5—‘/)+ 1/2<y/fvvifp/,_,i1t _Z/,,i +uf<jt fOlfD‘K,g ang = 016G,

it

where 77

with s, :1—2::15‘(’it , by the total land use constraint.

Equation (6a) defines the yield supply of ckops a function of the (anticipated) price of

cropk, p; , of the price of an aggregate variable inpw, , and of an error term.

The yield function of crogk is obtained by maximizing in the aggregate vagaiblput

level, x ., the expected margin of crdp 7, under the assumptions that the yield
function is quadratic in the aggregate variablaitripvel:

@ { Y =B+ e Vi =1 2907 G, + 0 =%, ) With EQY,,] = ELo, ] =0

and that the random termg (which may include a year specific effect) areeshed

when the input level is decid&dThis yield function is parameterized by two fixed

parameters, the curvature paramejgrand the year specific yield effed,,, and a
random parameté, ;. It depends on the effects of random events repted byyv, , and
U,; - Provided thaty, needs to be positive for the yield function toskréctly concave, the
farmer specific parametef, ; can be interpreted as the maximum expected yfedtop k

on farmi. This term depends on the natural endowment offah@a, on the production
technology used by the farmer as well as on higwbi

The optimal input level of farmerin t on cropk is thus given by:

(8) Xeit = i = Vi pl::}.t Ui

and the corresponding expected gross margin isidgiye

® Whether the random event effeats, and/or the year specific effecty, are observed or not doesn’t
matter. These effects are forgone by the considgigdneutral) farmer.
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9) T = (B +0) 11 22 W Dk ~ Wi,
This gross margin level is expected by the farmiéha time of his acreage choices,
before the observation of the random events reptededy v, and v, ;,, and of the year

specific effectd,,. The expectation acrosof the year effec,, is set to be equal to an

average year effectd, :T‘lzdm. Input demand equation (9) is not included in the
t

estimated multicrop models because the input usdsl@re not observed at the crop level
in our data set, they are only recorded at the faxml.’
Equation (6b) defines the acreage share optimaicebdased on the expected profit

maximization problem given by:

(10) ma&izk%zo{zkmgfr&n—q S kOK) s.t.zmsK = }1
The optimal acreage shares maximize the expectedsgrevenue of the farm,

Z“ms.mz_'rk’it , minus the implicit management costs of the a@edgice,C (s, :KOK)

which is assumed to be strictly convex in the ageeshare vector, under the total land use

constraint,zkm St =1. This constraint defines the crop 0 acreage sisee function of

the other acreage shares wa), =1_Z::13<,n- The implicit management cost function

C plays a crucial role here. Under the assumptian iths strictly convex in the acreage
share vectol(s, :kJK), it formally defines the diversification motive tife crop acreage.

It is defined by Carpentier and Letort (2013) as shhm of the unobserved costs and the
shadow costs related to binding constraints duemiting quasi-fixed factor quantities or

to bio-physical factor8. Since the quasi-fixed factor endowments are highly
heterogeneous, this cost function needs to be figgb@s farmer specific as much as
possible. The functional form of the acreage shacglels in equation system (6a) are

obtained by choosing the following Nested MNL magragnt cost function:

" This aggregation problem can be overcome by defian input use allocation equation as in Carpentie
and Letort (2012). However, this option would hawereased significantly the complexity of the calesied
multicrop model and of its estimation.

8 It can also be interpreted as a penalty functisriéviations from some reference acreage vectaslfiocch
the quasi-fixed factor endowment of the farm ist lseted.

14



C;I (Sk : k DK) = ZngZkDKg Sk(/\/k,i + uk,it)
vy, @apiS) BAY 002, S W

up to an additive fixed cost. The tergn= Zm s, defines the acreage share of grogup

(11)

The strict convexity ofC, is ensured ifp,; =a; >0 for gg . All parameters ofC, are

assumed to be farmer specific to ensure its abititcapture the heterogeneity of the

farms’ capital endowments. The heterogeneity of theand p,; parameters plays a

crucial role in this respeétAs shown by equation (6b), these terms largelgrdgne the
acreage choice elasticities. The larger they aeentore acreage choices are responsive to

economic incentives. Thg, ; parameters represent short run fixed costs.

Note also that the interpretation @f given above relies on the theoretical background

given in Carpentier and Letort (2013). In empirieglplications, the parameters of this
function may also capture the effects of other ifeation motives of crop acreages.
E.g., it may partly capture the effects of risk spiagdnotives (Chavas and Holt, 1990) or
of crop rotations (Howitt, 1995). This provides ther arguments for its specification
based on farm specific parameters. In particusamérs may have heterogeneous attitudes
toward risk, financial constraints or personal we#tvels. This basically implies that the

empirical estimates of th€ functions need to be as reduced form functionduciagy

various diversification acreage motives while actog for the heterogeneity of the
effects of these motives among the considered fafrpepulation.

Many multicrop models proposed in the literatureyraae more flexible functional forms
than the one considered here (seg,, Chambers and Just, 1989 ; Oude Lansink and
Peerlings, 1996 ; Moro and Skockai, 2006). As fashort run micro-economic choices
are concerned, our viewpoint is that it may be mimqgortant to account for heterogeneity
in the considered model than to use a highly flexitunctional form for this model.

Roughly speaking, if heterogeneity really matténnay be preferable to use a first order

°The termg,; equalsa; if groupgis a singletonk.g., we havep,; =a;. If g,; =a; for g g then

equation (6b) gives the Standard MNL acreage simadel and equation (11) gives the corresponding
acreage management cost function.

15



approximation for each sampled farm rather thamuge a second order approximation
defined at the sample level.
Due to insufficient variation of the aggregate inptices in our data sél,it is difficult to

separately identify thed,; and y,;, parameters empirically. This explains why the
expected gross margin used in the acreage sharel ifid) is not that given by equation
(9). The term{, ; in equation (6b) is given by, ; = x,;, ~wA, ;.

Note also that the total land use constraints intipdy the terms/,; and u,,, are defined
up to an additive term. The ternd§; andu,, are imposed to be null to overcome this

identification problent?
Additional notations are required to present th&triiutional assumptions defining the

parametric model considered in the empirical apgibm. The following system level

vectors are obtained from the crop level parametgrs (s, k0K ), y; = (Y, KOK),
Pie = (pk,it -kOxK), Vi = (Vk,it k%), Ui = (uk,it kK \{0}) B = (IBk,i kUK),
P =(Py; 190G\ , § =({; :kOK\{O}) , 8, =(J,:kUK), andy =(); :kOK). The
vectord = (9, :t = 2,...,T )contains the year specific effects on the yieldogufunctions.

In order to relate the multicrop model in this s&ttwith the generic choice model in the

preceding section, we finally define the farmer ichovector c, =(y,,s,), €xogenous
variable vectorz, =(p,,w,,d,), error term vectore, =(v,,u,) and random parameter
vector ¢, =(InB,,Ina,,Inp,,§;). The exogenous variable vecta includes the year
dummy variabled, .

The response functianconsidered in the preceding section is given lyagqgns (6). It is

parameterized by the random parameter vegtorThe counterpart af in the multicrop
model is also parameterized by the fixed parametetor 7 =(y,8). As argued in the
preceding section, the ternzg, e, and g, are assumed to be mutually independent for

t=1,...,T . Provided that the stochastic events affecting tlo@ @roduction process are

10 As well as due to our not modeling input demands.
' These normalization constraints imply that fig andu, , terms are to be interpreted as differences with

their counterparts for crop O.

16



unknown at the time acreage choices are made) beassumed that the terms and u,,

are also independent fo=1,...,T .

As is standard for error terms,, andu, are assumed to be normal wih) ~ NV (0,A)
andu, ~ N (0,¥). The mixing distribution of the model is also assd to be normal with

g, ~ N(a,). The covariance matriX2 being unrestricted this probability distribution
imposes no restriction on the relationships amdrey élements ofg,. Due to the log
transformation of g,, @, and p, in g, these terms are indeed assumed to be jointly log-

normal. This ensures their strict positivity.
Once again, in order to related the multicrop manteisidered here to the more general
framework elements of the previous section, thérdiselements of the parametexs A

and ¥ are collected inu, those ofa and Q are collected im, and0 = (u,n)) defines the

“full” parameter vector to be estimated.
The inverse function af is required to determine the (conditional) likelid functions of

the considered model. The elements/pfcan easily be recovered with:
(128) Vi = Vi =B — G, t112x AL pk_,i

while the elements afi, can be obtained by application of Berry’s (199dyide:
1 , _
;(In Sae —Insy,, —(1—aipg})><(lnsm —Insg,.t))+Zki

B (B +8.) =11 2% YW B + Doy ( Bow +8o) + 11 2% y 2 P,

The density ofc, conditional on(z,,q,) can be obtained by applying equations (2) and (3)

(12b) Ui =

and by using the density of normal random vectbet. ¢(u;B) denote the density
function of (0, B) atu. The density ofy, conditional on(z,,q,) is given by:

(13a) f(y,lz,0:n)=0(v,:A)

and that ofs, conditional on(z,,q;) is given by:

(130) (512,050 =% [ oo A7) ([ 8™ ¥ 9.

We obtain that:

(13c) f(elz.qm)=fllz.qmn)f 6 12.9n)
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thanks to the mutual independence\qf and u,, conditional on(z,,q,) for t=1,....;T.
Finally, the random parameter vector density i®gilay:

(13d) h(g;;n) =¢(q, Q).

The basis of the estimator of the interest paramisteahe likelihood function of the

farmers’ choice sequence conditional onz, at 6 and is equal tof (c |z;0). This

function can be obtained by considering equatidB$ &nd (4).

3. Estimation issues
Estimation of a random parameter model such asrtberesented in the preceding section
requires specific estimators due to its specifiacture. From a theoretical viewpoint, the
parameters of this fully parametric model can bieiehtly estimated according to the ML

principle. But the ML estimator of@ is practically “infeasible” because the individual
likelihood functions, i.e. thef(c |zi;9):jf(ci |z, ,q;p)h@m)g terms, cannot be

integrated in our case, neither analytically, namerically. These likelihood functions
must be integrated with simulation methods, imglythat the estimators d must be

simulated counterparts of the standard ML estinsatéurthermore, maximizing the “true”
sample log-likelihood functioni.e. ZL'” f(c1z:0), in 8 would be very difficult in

practice, due to the functional form of the indivadl likelihood functions and due to the
dimension of . Statisticians have proposed specific extensiohghe Expectation-
Maximization (EM) algorithm of Dempstet al (1977) to compute the ML estimators of
random parameter (or mixed) models. We employ autited EM (SEM) algorithm to
compute an estimator whose asymptotic propertiedasically those of the infeasible ML
estimator of 0 (see,e.g., McLachlan and Krishnan (2008) for a recent revief the
numerous SEM algorithms proposed in the statiitesture).

This section presents the main features of our coatipn strategy for our estimator 6f
The choice of this computation strategg, the particular design of the SEM algorithm we
use, was mainly based on practical argumeitsg. other SEM algorithms may be more
efficient from a numerical viewpoint or may requiless simulations, and thus less

computing time or power, to perform well. But thigorithm is relatively easy to code, has
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good theoretical properties and seems to perforth iwegpractice, at least as far as our
limited experience proves this. Further detailse&@lable from the authors upon request.

Our estimators are built by estimatinfgc, | z;0) with simulation methods. Provided that
the §, (n) terms are independent random draws frb(g;n) for s=1,....S, the strong
law of large numbers guarantees that:

(14) fs(c1z:0)=S"Y." (@ 12.6,0)n)

almost surely converges tb(c, | z ;0) asSrises to infinity. While econometricians usually
employ Simulated ML (SML) estimators in this corttestatisticians usually prefer to rely

on SEM algorithms to compute estimators which diffem SML estimators but which

basically share the same asymptotic propertieS asdN grows to infinity, withS rising
faster than/N (Jank and Booth, 2003). The SML estimatorga$ obtained by directly
maximizing the sample simulated log-likelihood ftion In ES,N(G) EZiN:lln Zs(e;ci |z),
usually by relying on gradient-based algorithmsisThaximization problem is difficult to
solve in our empirical application becadﬂd:S]N(()) is highly non linear i@ and because

the dimension o is quite large?

The EM algorithm is particularly well suited to cpate ML estimators in cases where the
model of interest involves hidden variables suchraslom parameters. It consists in
iterating two steps, the Expectation step (E séep) the Maximization step (M step), until

numerical convergence. It basically replaces aeldidl problem by a sequence of simpler
maximization problems?

In our case the EM algorithm involves the followidensity:
(15) «(c,q1z:0)=f(C |z.9:m)h@ m).

12E g., Train (2009) reports that the variance matriGaiussian mixing probability distribution is nosig
recovered by SML estimators, leading to the rettncthat this matrix is diagonal or block-diagoimamany
empirical studies.

13 The EM algorithm also increases the sample logfitibod at each iteration, implying that it genbral
leads to a (local) maximum of the considered Ikatid functionSEM algorithms do not necessarily
monotonically increase the simulated sample loglilood due to the simulation noise. The main dracih
of the EM algorithm is that, albeit it moves quickhto the neighborhood of ML estimator 6f, it
numerically converges slowly within this neighbooko
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The term«(c,,q; |z ;0) is the distribution function of the “complete” depmlent variable
vector (c,qg,) conditional on the exogenous variatde As a resultinx(c,,q, |z;0), is
the log-likelihood function ab of (c;,q,) conditional onz,. At iterationn, provided that
0., is the value ofg obtained at the end of iteration-1, the EM algorithm iterates the

following steps until numerical convergence:
E step. Integration of the conditional expectations:

(16) E[lnk(c,q1z:0)|z .c ;f)n_l]Ejln/((ci ,q1z:0)h@lz ¢ 9, dq fori=1..N.
M step. Update of the value &f with:
(17) 6,=argmaxQ, 0 P, whereQ, (0 |0n_1)EZLE[In k(.9 1z:9)|z,.¢c 0,1
The E step thus consists in integrating the indiald log-likelihood functions
Inx(c,q |z;0) over theex post density h(q, |z,c:0,_,). This integration yields the
expectation of log-likelihood function @t of the “complete” dependent variable vector of
farmeri conditional on what is known on this farmee, (z,,c ), and assuming tha& _, is
the true value of the interest parameter. The @odaalue of 6, is then defined as an ML
estimator of based on the individual expected ikghhood functions computed in the E
step.

Equation (15) is specific to models involving hiddeariables. It is used to split the M
step into two maximization problems:
(18a) p,=argmax Y E[nf € Iz 6 n)k 6 0,,
and:
(18b) w,=argmax 3" E [Ih ¢ n)F; ¢ 0,
where @, =(n,,n,). Basically, the parameters of the “behavioral nffode the one hand,

and those of the “mixing” model on the other haad be separately updated. In our case,
the elements ofy,, are defined as empirical means and covariances.

Of course, the expectations in equations (16)—-¢a8hot be computed neither analytically,
nor numerically. The EM algorithm described aboveuld lead to the infeasible ML

estimator of ,. The SEM algorithms were proposed to extend the afsthe EM
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algorithms in cases where the Expectation step inegjuintegration by simulation

methods.’

Our estimates were computed by using an algorithrthe class of the SEM algorithms
proposed by Delyonet al (1999). These algorithms, designated as the S$tcha
Approximation EM (SAEM) algorithms, have two maimvantages. First, they are
numerically stable despite their relying on intéigma by simulation methods at each of
their iterations. Second, they allow using simptifiversions of the M step. The M step

presented in equations (17) defin@sas the maximand i® of Q,(0]0,_,). Indeed,0,
can just be defined as a valuegosuch thatQ, (0, 10,_,)>Q, ©,_,10,_,), i.e. such tha®,
simply increases the value o, (0|0,,) from Q0,10 ,)."> We used the

simplification of the M step proposed by Meng andbR (1993),i.e. the sequence of
Conditional Maximization (CM) steps of their Expatbn—Conditional Maximization
(ECM) algorithm. The proposed algorithm only invedvsimple arithmetic operations.
the ones required to compute empirical means and @ktimators. Finally, the
expectations in equation (18) were integrated bgpguthe simulator proposed by Train
(2007, 2008).

Our detailed estimation procedure is available upsquest. We briefly present Train’s
simulator because it was used to estimate the tondi expectations in equations (16)—
(18) as well as to calibrate the farmer’s speqiarameters in our empirical application,
the complete algorithm used to compute the estsnatehe empirical application being
available upon request.

Train’s simulator allows estimating the expectatiohany functionr of (q;,z,c),

r.(q,)=r7(q;,z,,c), integrated over thex post density of the random parameters

4 Note that equations (4) and (5) show that thegiration problems encountered either when usindete
algorithm or when considering direct ML procedunese the same roate. it is difficult to compute

h(a; |z, ,c ;0) because it is difficult to compufgc, |z ;0).

15 |n their seminal article, Dempstetral (1997) also considered this extension of the stahi¥l step to
define an extension of the standard EM algorithnictvthey designated as the Generalized EM (GEM)
algorithm.
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h(g, |z;,c ;0) by simply using independent random draws fromrtlegi ante density
h(aq;m), i.e. by using theg; ((n) draws'® Equation (5) allows showing that:

(19)  Elr(a)12,6:01= [5(@)h(alz.c;:0)da= [« ©)7 @ )h(@:n)dg,

The strong law of large numbers then ensures that:

(208) Elf7,(a)12,6:01=S™Y." @.(0)7,(@, (W)

where:

f(clz ’q,s M);n)
S_lz; f(c.1z.,m)n)

almost surely converges t[7,(q,) | z,,c;0] asSrises to infinity. The use of the weight

(20b) G@,(0)=

terms @ (8) show that Train’s simulator can be interpretecaasmportance sampling
simulator with h(g;;n) as the proposal density. This proposal distributebearly is

inefficient, i.e. if g, exhibits significant variability them(qg;;n) is unlikely to be close to
h(g, |z,c ;0), but the simplicity of the proposed algorithm wl using very large

random draw numbers for approximatirigc, | z ;0).

4. Empirical application
As an illustrative application of the approach megd in this paper to account for farm
heterogeneity, we use a set of French data to &stithe multicrop model presented in the
second section. These estimations allow an invasbig of the distribution of the random
parameters of the model, which comes to illustrite importance of unobserved
heterogeneity in farmers’ production choices. Basedthese estimation results, we
perform a “statistical calibration” of the modelrpmeters for each sampled farmer in

order (i) to evaluate the performances of the edtoh model and (ii) to reveal some

' Such expectations can be integrated by using dirans h(q; | z,,¢ ;0) which are more difficult to obtain
E.g., it is always possible to obtain Metropolis-Hags random draws fromh(q, |z, ,¢ ;0). But this

simulation technique consists in a rather long @ssdo be repeated at each iteration of the SEMitig.
Train’s simulator appears to be much more conveniRendom draws fron(q;;0) are easily obtained with

random draws from the standard uniform distributieurthermore, the same draws frdifg,;0) can be

used for each farmer for an iteration and/or timeloan draws from the standard uniform can be re-tsed
compute the draws frorh(g;;0) along the SEM algorithm.
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potential determinants of the heterogeneity in fashbehaviors. We then perform some
simulations in order to study the impacts and paakimplications of the modeling of

heterogeneous behaviors on simulation results.

4.1. Data
The data set used to estimate our model is a miatal sample of 391 observations of
French grain crop producers in the large (geoldgiearis basin over the years 2004 to
2007, obtained from the Farm Accountancy Data NEKWBADN). It provides detailed
information on crop production for each farm: agesayield and price at the farm gate.
The aggregated input price index is made availabléhe regional level by the French
Department of Agriculture.
In our application yield levels and acreage shaneioes are considered for three
(aggregated) crops: soft wheat (crop 1), otherater@nainly barley and corn, crop 2) and,
oilseeds (mainly rapeseed) and protein crops (yaeas) (crop 0). Crop aggregates are
based on agronomic considerations. The basic oatascheme of the French grain
producers is a sequence with three crops as: opsd.g. potato or sugar beet) or protein
crop or oilseed€gg. rapeseed or sunflower) — winter wheat — secondargal é.9. barley
or wheat). This scheme is adapted to soil and tlintanditions. Rootcrops require good
quality soils which are found in the north of Fran&unflower is grown in the south of
France while rapeseed, the other main oilseed isrgpown in the north of France (our
region of interest). Sugar beet and potato acreagge considered exogenous due to
production quotas for sugar beet and productiornraots for potatoes.
The considered sample only includes observationk strictly positive acreages. This
selection rule doesn’t lead to significant attnitithanks to the crop aggregation procedure.
Our sample covers the French regions specializegtam production, with the notable
exception of the south-west of France where cornauolture is the dominant cropping
system. Farms are observed for 3 years on avevWdgeassume that farms’ attrition is
exogenous. The French FADN is constructed as &éirgtpanel seeking to collect data for
4 years for each sampled farm. Such an attrisogasily accommodated in our modeling
framework. Farms’ likelihood functions are computsztording to the observed choice

sequences.
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4.2. Estimation Results

Our estimations are conducted by using the SASwveoft and applying the procedure
presented in the third part of the paper. The searstep of simulation of SAEM
algorithm is implemented using 1000 draws. The rilgm converges without difficulties
after 244 iterations. Results were not significaaffected by the use of alternative starting
values or the use of larger number of draws.

Selected estimation results are reported in TaldadlTable 2, the complete results being
available from the authors upon request. Thesdtseshiow that the model fits relatively
well to the data. Indeed, most parameters, espedied expectations and covariances of
the random parameters and the variance matricksadrror terms appear to be precisely

estimated. The fixed parameters representing grigeand time ¢ ) effects appear to be

less precisely estimated. This is due to a lackavfation in crop prices in the period
covered by our data: price effects on yields camllizdbe distinguished from time-related
effects. Since climatic events are the main souofegeld variations from one year to
another, this issue could be overcome by introducliimatic variables in the model. This
is however not the central in the present studychvhims at exploring the heterogeneous
determinants of farmers’ behaviors. Indeed, eveprife and climatic effects are not
separately identified, our estimation account feairt joint impact on yields; there is thus
no reason for the introduction of climatic variabte change the results of the estimations
of the random parameters distribution.

The yield equation parameters (reported in Tablarg) precisely estimated. This was
expected since each yield equation basically isgression equation with individual
random terms. The parameter estimates lie in redgd®ranges. The estimates of the

probability distribution off, show that the5 ; parameters significantly vary across farms

while being strongly positively correlated to easther. This was expected because yield
potentials vary across regions, and because gamdirgy conditions for a grain crop are

also good for the others. The variance®f is higher or close to that of ; for wheat and
other cereals, but the variance\qf; is twice that of error terms in the oilseeds cases

may reflects at least two points: first, a larget p# the heterogeneity in cereals, and
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notably wheat, yields is due differences in unobmele characteristics of each farm or
farmer; second, provided that rapeseed is by farntibost important oilseed in northern
France, these results may be due the fact thatafheseed yield is more risky than the
cereal yield, mostly due to bugs and diseases.

The acreage share equation parameter estimatesrt@epin Table 2) also range in
reasonable ranges. The estimated expectatidmaf, respectively ofin o, equals -2.357,
respectively -2.186. Importantly, the estimatehaf €xpectation op, is higher than that of

a.. This is a sufficient condition for the entropicreage management cost function, lying

at the root of the Nested MNL acreage share functio be convex. According to the

estimates of their respective variances, édhend p. parameters significantly vary across

farms. This result is important for simulation sasdbecause these parameters largely

determine acreage price elasticities in MNL acrestyggre models. The higher and p
are, the more reactive the acreages are to praegels. The elements @f appear to be
positively correlated witha,. A possible interpretation of this result is afofes. High
levels of B, indicate good farming conditions for grain cropsfarm i and/or farmeri

technical ability. This implies that the farm op@a is sufficiently profitable to allow

suitable machinery investments which, in turn, iepla high level ofa;, and, finally,

relatively unconstrained acreage choices betweeealseand oilseeds. The results are

different when it comes to acreage adjustmentsinvithe cereal nest: the elementsfpf
are not positively correlated witpp,, which tends to show that the flexibility of acgea

adjustments between wheat and other cereals iciassb to other factor than the one

advocated previously.

4.3. Satistical calibration of individual parameters
As explained in the first part of the papéme estimated parametric model allows a
computation of the (randony), parameters for each farm/farmer of the sampleyrdouny
to the logic “tell me what you do, I'll tell you whyou are”. Once thex ante distribution

of g,in the population has been estimated we “statibficealibrate” the specific
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parameters for each individualbased on thex post density ofq;, , that is conditional on

observed farmers’ responses to economic incentiMesex post and ex ante density of

selected random parameter,,( a; and p) are represented on Figure 1. The two

distributions almost superimposed for all parangtehich reflects a good specification of

our model (Train, 2007). We can also notice that distributions of thep, parameters,

representing maximum potential yields of the faraqspear to be more spread for other
cereals than for the two other crops, reflectingigher heterogeneity of yields between
farms for that crop. That might be due to the thett “other cereals” is an aggregate of
various crops (mainly corn and barley), whereaseathis a single crop and “oilseeds” is

essentially composed of rapeseed in our sample.dftend p parameters exhibit right-
skewed distribution. The two distributions refleti® fact thata, parameters generally
take lower values thanpo parameters (this is actually the case for 73% huf t
farms/farmers, the remaining 27% individuals havipg values almost equal tar,

values), which reflects more flexible adjustmergsaAeen wheat and other cereal acreages
than between oilseeds and other crops and is &isuoff condition for the acreage
management cost function to be convex.

Figure 2 reports the calibrated values of fhe a, and p. parameters together with their

confidence intervals for each farm/farmer of thegle. We can see from these graphs that
confidence intervals of parameters do not overtapafl individuals: these parameters do

actually take different values from one individt@lanother. This comes to illustrate the

heterogeneity in potential yields across farms @nthe way farmers are able to adjust

their acreages in response to economic incentives.

Having calibrated individual parameters for eaaimféarmer, we are able to compute the

individual yields and acreages predicted by the NMihbdel. Based on these predictions,

we can then compute “pseuld” criteria corresponding to the share of the vagaot
interest variables predicted by the model, and @mphe average observed values of
these variables to their predicted values. Thesedicriteria of the model are reported in

Table 3 below. Once again, the model proves twdit the data, especially for wheat and

other cereals with “pseud®y” around 60% for yields and 70% for acreage shawed,
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observed and predicted average values very clogetoneach other for all interest
variables.

Up to this point, we have demonstrated that farmieehaviors do actually rely on

heterogeneous determinants which are not expliaittyoduced in the model used to
represent their production choices. It thus seemsia to account for heterogeneity in
micro econometric production choice models. If #mirces of this heterogeneity were
known to econometricians, they could be controfl@dthrough, for instance, the use of
control variable¥. However, if some of them are identifiable, hetemneity sources are
multiple and most of them can certainly not be oedlito farm/farmers’ observable
characteristics. This point is illustrated by Figg@and Table 4.

Maps reported on Figure 3 show the calibratedesbf three parameterg, ; for wheat,

a, and p'® for each farm of our sample. The top left map Myeshows that the

distribution of potential wheat yields exhibits patial pattern, the highest yields being
located in the North of France. This is in totat@dance with what is known about the
different agronomic potentials of French regiomsétdducing spatial farm characteristics in
the model could help accounting for some heteragernearms’ localization is however

not the only source of heterogeneity in agricultpraduction choices. This is reflected by

the two other maps on Figure 3: the distributiotthef o, and p. parameters across space
is different from that of the3; parameters. No specific spatial pattern seemsganfesm

these maps.

In a further attempt to qualify the potential s@mgof farmers’ behaviors heterogeneity, we
have computed the correlation between the valuemd¥idual parameters and some
observable farms/farmers characteristics considesezkogenous in the model: the amount
of farm capital, the root crops acreage and theaddarmer®. Farm capital is positively
and significantly correlated with th,; parameter for oilseed, tlag parameter, and to a
lesser extent theB,; parameter for wheat. This reflects one argumemvipusly

advocated: farms endowed with more capital arentbee productive ones and also own

17 Of course the use of control variables is allowedur modeling approach. But it is omitted for piinity
as well as for investigating the potential of ramdearameter models.

18 Maps corresponding to other parameters are aveifedim the authors upon request

19 Other variables such as the number of labor houtise total acreage of the farm have been tested b
none of them were significantly correlated to ahyhe individual parameters.
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enough machinery to easily adjust their acreagéferBnt explanations can lie at the root
of the positive and significant correlations betweeot crop acreage and tfig; anda;
parameters: root crops are good preceding cropswfegat and other cereals which
explains the positive correlation with their potahyields; furthermore, a good soil quality
is necessary to grow root crops and this good tyualko benefits to other crops like wheat
and other cereals but also oilseeds, hence thdiveosiorrelation with all theg, ;
parameters; finally, root crops can be used adtamative to oilseeds as preceding crops
for wheat and other cereals and thus relax somstreonts on acreage adjustments which
translates into a positive correlation with tagparameters. The positive and significant
correlations between farmers’ age and potentiddgienight be due the role played by
experience in farmers’ skills and abilities.

All the aforementioned exogenous variables couig thelp controlling for part of farm
heterogeneity in our production choice model. Hosverone of the correlations presented
in Table is high enough to conclude that usingehmmtrol variables would be sufficient

to capture all the sources of heterogeneity.

4.4.Smulation Results
This last subsection is devoted to the presentati@ome simulation results: we simulate
the impacts of changes in crop prices corresponttinfpose that have been observed in
France since 2007, namely a 20% in wheat and ctreal prices and a 50% increase in
oilseeds prices.
As mentioned in section 4.2, theandé parameters representing the effects of price and
time on yields are not very precisely estimatecer&fore, we focus here on the impacts of
price changes on acreages and assume that thedes sfmonot impact yields, which are
thus held constant in the simulations.
Table 5 reports the distribution characteristicshef elasticities of acreages to changes in
crops prices in our sample. These elasticities kaye parameters determining farmers’
responses to price shocks. We can first noticeahdhese calibrated elasticities have the
expected signs: own price elasticities are posgineé cross price elasticities are negative.
They also lie in a reasonable range and reflechitjeer flexibility of acreage adjustments

within the cereal nest: wheat (respectively othereals) acreage responds more to a
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change in other cereals (respectively wheat) pti@n to a change in oilseed price.
Furthermore, the reported quantiles values refiegteat dispersion of elasticities within
our sample. One can thus expect each farmer to ddéerently to the price changes we
simulate here, which is not surprising given thearaeces of the model random parameters.
The first column of Table 6 reports the effectsamneages of the changes in crop prices
simulated using our “statistically calibrated” imtiual parameters model. The relative
increase of oilseeds price compared to wheat ahdr atereals prices lead farmers to
reallocate part of their land to this now more fatfie crop: among the 10168 ha devoted
to crops in our sample, 159 ha of wheat (represgm?o of the initial wheat acreage) and
183 ha of other cereals (representing 6% of th&lrother cereals acreage) are reallocated
to oilseeds which acreage thus increases by 34&peesenting 12% of the initial oilseeds
acreage). This represents average variations af 2 ha and 4 ha for respectively wheat,
other cereals and oilseeds acreage. However, Hiagis¢ions greatly vary from one farm to
another: the increases in oilseeds acreage notabjybetween 1 ha and 13 ha in absolute
term, and between 3% and 38% of the initial oilseadreage, depending on the farm.
These contrasting results come to illustrate th&erbgeneity in farmers’ response to
economic incentives.

In order to further assess the potential impacthefapproach proposed here to account
for heterogeneity on the overall simulated eff@tprice changes, two alternative versions
of the NMNL model have been estimated and usednalate the same shock. In the first
model, all parameters are fixed. This model isnestied using a Maximum Likelihood

approach. In the second model, theand p parameters, representing the flexibility of
acreages adjustment, are fixed, fhe and £ are random. This last model can thus be

considered as fixed individual effect model. le&imated using the SAEM algorithm. The
estimation results of these two models are predeint§able 7. The main elements that
come out of these results are thatwe encounter the same problem to indentify theepr
effects as with the random parameter model: hezeytland 6 parameters are even not
significantly estimated;ii) in the fixed effect model, the estimated valuesroand p are
closed to estimated their expectation values inrmelom parameter mode#r &0.100
and p=0.122), which is not the case with the fixed parametedel wheread and p
respectively equal to 0.017 and 0.04&) the log likelihood of the fixed effect and fixed
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parameter model respectively equal to -1005.4 840.27, compared to -816.35 for the
random parameter model: the log likelihood rat&i teus clearly indicates that the random

parameter model significantly better fits the d#tan the fixed parameter model (
x* =378, DF=28) and the fixed effect modet{ = 248, DF=13) at the 1% level.

The impacts of price changes on acreages simukitedhese two models are reported in
the second and third column of Table 6. The overappacts on acreages are clearly
underestimated with the fixed parameter model:di@nges in wheat, other cereals and
oilseeds acreages are respectively equal to -448He and +48 ha, which represent 72%
to 98% lower effects than the ones simulated wahdom parameter model. This can
certainly essentially be attributed to the lowetinested values ofa and p. However,
despite@ and p values close to their “expectation equivalentthie fixed effect model,
overall simulated impacts also tend to be undemnegéd in this model, even if to a lesser
extent (2% to 40% lower effects). One possible axation is that farmers owning more
land are also the ones that have the more fleisibii acreage adjustments, hence the
largest simulated global acreage variations whenhttterogeneity i@ and p is taken
into account. These results are clearly illusttaie Figure 4 which reports the individual
simulated effects on oilseeds acreage using theethnodels and taking the random
parameter model as reference: the higher the impattoilseeds acreages are, the more
they are underestimated by the two alternative msodéere is thus a risk, by partially or
totally ignoring the heterogeneous determinants fafmers’ behaviors in micro
econometric models, to generate biased simulagsults.
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Conclusion

Many unobserved heterogeneous factors can impactefa’ production decisions. The
approach we propose in this paper allows accountongthis heterogeneity in the
econometric estimations of agricultural productmadels in a fairly flexible way. We rely
on a random parameter modeling framework: the idigion of the model parameters
across the farmer population is estimated, whidbwal the parameters to be farmer
specific in order to account for unobserved hetenegy effects.

Using specific estimators and optimization procedudesigned by statisticians, we are
able to estimate a random version of the multicempnometric model proposed by
Carpentier and Letort (2013). This empirical apgtiien is based on a sample of French
crop producers observed from 2004 to 2007. We ttiadl the key parameters of the model
exhibit significant variability across farmers. thermore, our random model proves to
better fit the data than its counterpart fixed gudsi-fixed” versions. We thus find
evidence that heterogeneity significantly mattess the modeling of micro-economic
agricultural production choices.

We also show how random parameter models can ke toséstatistically calibrate” a
simulation model based on a sample of heterogentouss and use this “calibrated”
model to simulate the impact of crop price chamyescreages. This allows us to further
illustrate the potential role of heterogeneity incrm econometric production choices

models, and to show that ignoring it can lead tsl@aiding simulation results.
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Tables and Figures

Table 1: Selected parameter estimates, yield equati (standard deviations in parentheses)

12 ElB,] Cov B, 5] Varlv, ]
Wheat Cereals Oilseeds
(1=1) (I=2) (1=0)
Wheat (k =1) 0.710 7.952 0.992 0.807 0.555 0.595
(0.120) (0.051) (0.077) (0.073) (0.046) (0.044)
Cereals(k = 2) 0.140 7.167 0.807 1.215 0.509 1.077
(0.101) (0.056) (0.073) (0.098) (0.048) (0.079)
Oilseeds(k = 0) 0.174 5.265 0.555 0.509 0.428 0.852
(0.110) (0.034) (0.046) (0.048) (0.034) (0.062)

Note: standard errors are in parentheses

Table 2: Selected parameter estimates, acreage skaquation (standard deviations in parentheses)

Expectation Covariances with
Ina, Inp Ing, In g, In g,
Wheat Cereals Oilseeds
In a, -2.357 0.196 0.112 0.008 0.019 0.010
(0.023) (0.015)  (0.014) (0.003) (0.004) (0)003
In P, -2.186 0.112 0.279 -0.012 0.007 -0.005
(0.027) (0.014)  (0.022) (0.004) (0.005) (0.004)
Note: standard errors are in parentheses
Table 3: Fitting criteria of the model
Yields Y Acreage sharesS;
Observed Predicted Observed Predicted
“pseudoR” " average average “pseudoR’ " average average
Wheat (k =1) 73.80% 7.93 7.91 79.89% 0.45 0.46
Cereals(k = 2) 65.38% 7.78 7.74 84.79% 0.30 0.30
Oilseeds(k = 0) 51.66% 5.73 5.72 56.56% 0.24 0.25
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Table 4: Correlations between random parameter valas and farmers’ characteristics

B, B, B, a P,
Wheat Other cereals Oilseeds
Farm capital 0.172 0.126 0.262 0.165 0.003
(0.079) (0.200) (0.007) (0.092) (0.973)
Root crop acreage 0.310 0.195 0.296 0.407 -0.027
(0.001) (0.059) (0.002) (<0.001) (0.781)
Farmer’s age 0.308 0.206 0.282 0.157 -0.242
(0.001) (0.035) (0.004) (0.111) (0.013)

Note: P-values are in parentheses

Table 5: Characteristics of the distribution of aceage shares price elasticities

Average Q5 Q25 Q50 Q75 Q95

Wheat Acreage

Wheat Price 0.43 0.24 0.32 0.39 0.49 0.77

Other cereals Price -0.25 -0.61 -0.29 -0.18 -0.15 -0.11

Oilseeds Price -0.14 -0.24 -0.16 -0.13 -0.11 -0.08
Other cereals acreage

Wheat Price -0.48 -1.19 -0.67 -0.36 -0.23 -0.14

Other cereals Price 0.61 0.22 0.33 0.49 0.79 133

Oilseeds Price -0.14 -0.24 -0.16 -0.13 -0.11 -0.08
Oilseeds acreage

Wheat Price -0.37 -0.84 -0.45 -0.31 -0.20 -0.13

Other cereals Price -0.23 -0.67 -0.29 -0.17 -0.10 -0.05

Oilseeds Price 0.50 0.17 0.31 0.43 0.65 0.95
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Table 6: Simulated impacts on acreages of the prichock

Random parameter model Fixed parameter model Fixethdividual effects model

Wheat Acreage
Total change in ha -159 (-3.9%) -44 (-0.9%) -96 (-2.2%)
Average change in ha -2 (-4.5%) -1(-0.9%) -1(-2.3%)
Max change in ha <0.5 (<0.1%) 1(+0.6%) 1 (+1%)
Min change in ha -7 (-17.0%) -2 (-2.4%) -5(-9.3%)
Other cereals Acreage
Total change -183 (-5.6%) -3(-0.1%) -178 (-4.7%)
Average change -2 (-6.3%) <0.5 (-0.1%) -2 (-5.1%)
Max change +2 (+11.7%) 1(+1.8%) <0.5 (<0.1%)
Min change -8.8 (-20.0%) -1(-2.7%) -8.8 (-20.0%)

Oilseeds acreage

Total change +342 (+12.1%) +48 (+2.4%) +274 (+12.8%)
Average change +4 (+13.9%) +1 (+2.4%) +3 (+12.8%)
Max change +13 (+38.2%) +1 (+4.0%) +9 (+21.8%)
Min change 1(+3.1%) <0.5 (+1.1%) +1 (+4.5%)

Note: Numbers in parentheses correspond to %age changes compared to initial acreages
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Table 7: Results of the three models

Parameters

Modell

(All parameters are fixed)

Model2

(@ and O are fixed)

Model3

(Random parameters

Model)

In g,
In 4,
In 4,
Ina
In o
¢y
¢z
4
1z

AN

,2004

[ N
o o
o o
(<] o

,2004

,2005

,2006

,2004

,2005

5534 c§)4 C§>1 BS>1 hS>1 hS>1 !534 rs>1 PSM

> p;> F;> p;> [N}

DO POPOOD>>

[y
N

[
w

= =
o 4}

[
~

1.972 (0.008)
2.123  (0.009)
1.645 (0.011)
-4.502 (0.021)
-3.351 (0.033)
-94.887 (3.072)
-77.982 (3.380)
-0.562 (0.091)
1.453  (0.095)
-0.045 (0.109)
1.131  (0.137)
0.247  (0.106)
-0.050 (0.133)
0.863 (0.143)
0.644 (0.140)
0.458 (0.156)
1.061 (0.115)
0.816 (0.103)
0.031 (0.09)
1.496 (0.116)
0.945 (0.102)
0.704 (0.077)
2.188 (0.168)
0.647 (0.091)
1.277 (0.114)

2.085 (0.004)
1.956 (0.005)
1.579 (0.004)
-2.303 (0.033)
-2.104 (0.019)
-4.431 (0.098)
-1.752 (0.152)
0.942 (0.138)
0.133 (0.114)
-0.456 (0.130)
1.052 (0.155)
0.292 (0.161)
0.190 (0.130)
1.253  (0.160)
0.764 (0.253)
0.422 (0.125)
1.163 (0.146)
0.885 (0.130)
0.043 (0.184)
0.587 (0.032)
0.213 (0.041)
0.153 (0.042)
1.074 (0.061)
0.143 (0.058)
0.831 (0.060)
0.0156 (0.0007)
0.0143 (0.0009)
0.0138 (0.0007)

-0.1559 (0.0123)
-0.1060 (0.0195)

2.066 (0.006)
1.958 (0.007)
1.653 (0.006)
-2.357 (0.023)
-2.186 (0.027)
-4.015 (0.141)
-1.722 (0.130)
0.710 (0.120)
0.140 (0.101)
0.174 (0.111)
1.078 (0.129)
0.296 (0.151)
0.154 (0.121)
1.248 (0.135)
0.767 (0.162)
0.429 (0.132)
1.078 (0.131)
0.844 (0.180)
0.047 (0.147)
0.595 (0.044)
0.217 (0.043)
0.162 (0.038)
1.077 (0.079)
0.159 (0.050)
0.852 (0.062)
0.016 (0.0012)
0.014 (0.0012)
0.013 (0.0010)

0.008 (0.0029)
-0.008 (0.0037)

-0.084 (0.0181)
0.027 (0.0157)
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0.0239 (0.0013)
0.0148 (0.0009)

-0.1738 (0.015)
-0.1488 (0.022)
0.0179 (0.00083)

-0.1668 (0.0134)
-0.0543 (0.0202)

7.767 (0.417)
-6.0536 (0.573)

0.023 (0.0017)
0.013 (0.0012)
0.019 (0.0038)
0.007 (0.0045)
-0.062 (0.0221)
0.010 (0.0191)
0.015 (0.0012)
0.010 (0.0030)
-0.005 (0.0037)
-0.088 (0.0184)
0.029 (0.0159)
0.196 (0.0147)
0.112 (0.0142)
0.062 (0.0605)
-0.126 (0.0543)
0.279 (0.0217)
-0.409 (0.0802)
0.421 (0.0721)
7.408 (0.5327)
-5.709 (0.4352)

Q,, 19.349 (0.997) 6.239 (0.4150)
Log Likelihooc -1005.35! -940.270 -816.352
Likelihood ratio tes 130.172 378.008
HO: Modell DF=15 DF=28
Likelihood ratio tes 247.836
HO: Model2 DF=13

Note: standard errors are in parentheses
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Figure 1: Ex post and ex ante distribution of random parameters
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Figure 2: Calibrated values and confidence interval of individual parameters
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