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Abstract 

Empirical modelling of the influence of subsidization on productive efficiency is a challenging task 

since production theory is particularly silent on the incorporation of contextual drivers like subsidies 

into a production technology. This paper contributes to the literature by proposing a novel 

semiparametric ‘smooth-coefficient conditional efficiency’ model, and comparing its results to the 

more traditional conditional efficiency framework and the semi-parametric smooth-coefficient 

stochastic frontier setup.  Combining the three advanced frontier models is attractive as it yields 

complementary insights. The conditional efficiency model explicitly assumes that subsidies may 

influence the choice and the level of input use. The stochastic frontier approach allows us to treat 

subsidies as facilitating input i.e. as additional cash flow that may alter marginal product of 

conventional input and influence technical efficiency. The newly developed ‘smooth-coefficient 

conditional model’ interprets technical efficiency as a factor that scales output from the production 

frontier. We implement these specifications using a balanced panel dataset of 396 French farms 

covering the period 2008 to 2011. Results indicate that subsidies correlate negatively to output 

production by distorting land, labour, and intermediate consumption marginal productivity, by 

decreasing farm technical efficiency, and by contributing to decreasing technical change. 
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1. Introduction  

In most industrialized countries, farm subsidization constitutes the main agricultural policy 

instrument and accounts for a large part of farmers’ income. For instance, the yearly budget of 

the European Union (EU) Common Agricultural Policy (CAP) is 50 billion Euros, of which 

subsidization absorbs on average 90% (European commission, 2013a). About one-quarter of 

the gross margin and one-half of the net value added (FNVA) of farms in the EU countries are 

due to subsidization (European commission, 2013b; OECD, 2013). In this context it is 

relevant to investigate the impact of subsidization on the agricultural production process, and 

the channels by which they impact. In this line, although theoretical considerations support 

that subsidization may influence agricultural production activities (e.g, Martin and Page, 

1983; Hennessy, 1998; Serra et al., 2008; Kumbhakar and Lien, 2010), empirical modelling of 

subsidization in production process remains a challenged issue. The main complexity lies in 

the absence of theoretical guidance on the appropriate empirical model. As a result, empirical 

studies model the influence of subsidization in an ad hoc fashion (McCloud and Kumbhakar, 

2008) and this may lead to contrasted empirical results in terms of the direction of the effect 

(see Minviel and Latruffe, 2014, for a meta-analysis). Therefore, this paper contributes to the 

literature by providing a better empirical understanding of subsidy effects on the production 

process.    

The most commonly used frameworks in the existing empirical literature include the 

parametric Stochastic Frontier Approach (SFA) and the nonparametric two-stage Data 

Envelopment Analysis (DEA).  In the SFA framework the correlation of subsidization is 

estimated by specifying a likelihood function which accounts for the dependence of the 

inefficiency component on subsidies (see Battese and Coelli, 1995). In the two-stage DEA 

approach, efficiency scores are estimated in the first stage without accounting for subsidy 

effects and then these scores are regressed on subsidies in the second stage. The main 

drawback of those approaches is that they do not explicitly account for the impact of subsidies 

on the input-output space. To solve for this issue, alternative modelling frameworks treat 

subsidies as input or as output. However, treating subsidies as input or as output may create a 

modelling artefact. On the one hand, when subsidies are modelled as output they artificially 

inflate output production and tend to erroneously provide positive subsidy-efficiency nexus 

(Minviel and Latruffe, 2014). On the other hand, subsidies should not be modelled as input 

since they are generally used to purchase parts of conventional inputs included in the 

efficiency model. Using the above approaches and others, Latruffe and Minviel (2014) show 

that contrasted results may be evidenced for a given dataset depending on the approach. 

Subsidies should therefore be treated as confounding variables, which can directly influence 

the level of inputs and outputs.   

To improve our understanding of the impact of subsidization on farm productive efficiency in 

a way that is consistent with the theoretical consideration that subsidization may alter 

marginal product of traditional inputs, this paper suggests the use of recent advanced 

production frontier methods and the developing of a new approach. These frontier methods 

include the conditional efficiency model (Daraio and Simar, 2007; De Witte and Kortelainen, 

2013), and the semi-parametric smooth-coefficient stochastic frontier (Sun and Kumbhakar, 
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2013). In addition, we propose a semiparametric ‘smooth-coefficient conditional efficiency’ 

(SPSC-CE) model. Conceptually, these methods allow modelling subsidy as facilitating input 

or as non-neutral technology shifters as in McCloud and Kumbhakar (2008). That is, they 

enable treating subsidies neither as output nor as conventional input, but as additional cash 

flow that may alter the marginal product of conventional input and thus impact farm 

productive efficiency. In other words, this conceptualisation allows subsidies to affect both 

production technology (i.e., input-output relationship) and technical efficiency (i.e., efficiency 

with which input are transformed into output).   

The suggested methods are complementary in the sense that they focus on some specific 

virtues of the standard frontier modelling framework. The conditional efficiency method 

allows a fully nonparametric modelling of the production process conditionally to subsidies. 

By avoiding restrictive assumptions on production technology, and by relaxing the 

separability assumption of the two-stage DEA approach (Daraio and Simar, 2007), the 

conditional efficiency method may provide consistent information on the efficiency with 

which inputs are transformed into output conditionally to subsidization. But it is not 

informative on the effects of subsidies on input-output technological relationship and does not 

allow for noise in the data. In the semi-parametric smooth-coefficient stochastic frontier, 

technological parameters are function of exogenous drivers that may influence the production 

process. Hence it allows explicitly inferring on the effect of subsidies on technological 

relationship and it is suitable for noisy data. But estimations may lack of accuracy since the 

production frontier is not fully nonparametric and since it requires distributional assumptions 

on the efficiency component. Our semiparametric smooth-coefficient conditional efficiency 

(SPSC-CE) model can be thought of as a semi-parametric version of the conditional 

efficiency model which allows for noise, which is informative on technological parameters 

given contextual drivers such as subsidies, and which does not impose restrictive assumptions 

on the efficiency estimation.  

The paper has two main contributions to the empirical literature on the subsidy-efficiency 

nexus. First, we propose the so-called semiparametric smooth-coefficient conditional 

efficiency (SPSC-CE) model which is suitable for noisy data and does not require inefficiency 

distributional assumptions. Second, the suggested specifications allow us to address the 

question of whether subsidies affect both production technology and technical efficiency, 

which is not clearly answered in the existing literature.  

The remainder of the paper is structured as follows. In section 2 we describe the 

methodological framework. Section 3 presents the data used. In section 4 we present and 

discuss the empirical results. Concluding remarks follow in section 5.  

 

2. Methodology 

This paper applies two recent advanced frontier methods and proposes a new method to 

examine the effects of subsidization on farm productive efficiency. In the conditional 

efficiency model, we explicitly assume that subsidies may influence the choice and the level 

of input use. The stochastic frontier approach allows us to treat subsidies as facilitating input 
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or as additional cash flow that may alter marginal product of conventional input and influence 

technical efficiency. The new ‘smooth-coefficient conditional model’ interprets technical 

efficiency as a factor that scales output from the production frontier. It is clear that the three 

techniques act as complements and provide complementary insights.  

2.1 Conditional efficiency model 

First, we use the conditional efficiency method introduced by Cazals et al. (2002) and Daraio 

and Simar (2005, 2007) for continuous contextual drivers, and developed further by De Witte 

and Kortelainen (2013) to handle continuous and categorical variables. This setup is a fully 

nonparametric approach which allows modelling production process conditionally to 

contextual drivers, such as subsidies, using kernel setting.  

A production process which combines inputs     
 

 to produce outputs     
 

 given the 

confounding variables     
  (including subsidies) can be fully characterized by the joint 

conditional probability (Cazals et al., 2002; Daraio and Simar, 2007):   

                                        

                                                                    [1] 

                                                           

where                denotes the conditional survival function of Y, i.e.,        

         ,  and               the marginal conditional distribution function of  , i.e., 

               . Expression [1] gives the probability for a unit operating at level       

to be dominated, i.e., that another unit may produce as much output using no more input, 

given    . The support of this probability is defined by the production technology   . Then 

an output-oriented conditional efficiency score is defined by the upper boundary of the 

support of                as follows:  

                                                               [2] 

The robust order-m specification (i.e., which does not envelop outliers) for expression [2] can 

be obtained by the conditional output-oriented order-m frontier which defines the expected 

maximal level of outputs achievable for a subset of m production units randomly generated by 

a conditional q-variate survival function               . For any value  , there exists 

   
                       

      such that the conditional output-oriented order-m 

efficiency measure is defined as:  

                      
                        [3] 

                                                      
 

 
 

 
  . 



5 
 

For multivariate   including continuous and categorical drivers, the empirical counterpart of 

the survivor function               can be estimated using the mixed-multivariate kernel 

function suggested by De Witte and Kortelainen (2013) as follows:  

                       
                      

 
   

                 
 
   

    [4] 

Where                    
    is a r-variate

2
 product kernel function (see, De Witte and 

Kortelainen, 2013 for more details),                a vector of r estimated bandwidth 

parameters, and      is an indicator function which equals to unity if its argument is true and 

zero otherwise. Thus, the conditional efficiency estimator            is given by plugging 

                 into equation [3].  

To highlight the influence of subsidies on the production process, we follow De Witte and 

Kortelainen (2013) by regressing the ratio of the conditional efficiency           to the 

unconditional efficiency        , on the contextual drivers using kernel local linear regression 

setting.  More formally, the kernel non-parametric regression model can be expressed in the 

following way: 

                                                      
                                   [5] 

where    is an error term with           ; and      is the mean regression function, since 

    
           . The local linear estimator of [5] is given by the following minimisation 

setting:    

                   
        

         
                               [6] 

 

Where    is the generalized product kernel function defined in [4],   denotes the bandwidth 

matrix,          denotes the intercept and       are the local linear gradients,       is a 

vector of continuous contextual drivers, and       stands for a vector of discrete contextual 

drivers. Note that in [6], continuous regressors    are treated in a local linear way, while 

discrete regressors    are treated in a local constant one.  

2.2 Smooth-coefficient Stochastic Frontier 

The second method used is the semi-parametric smooth-coefficient stochastic frontier (SPSC-

SFA) (Sun and Kumbhakar, 2013). Similarly to the conditional efficiency method, this 

approach allows subsidies to affect both production technology and the efficiency with which 

inputs are converted into outputs. But contrarily to the conditional efficiency method, the 

SPSC-SFA allows inferring on the effect of subsidies on input productivities and assuming 

that the data may be noisy. Hence the SPSC-SFA allows capturing the relationship between 

subsidies and productive efficiency (i.e., productivity and technical efficiency) by the 

following specification:    

                 
                      [7] 

                                                           
2
        is multivariate in the sense that it defines       univariate kernels.  
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where     denotes the logarithm of output of farm   at time  ,     is a p-vector of the logarithm 

of inputs used by farm   at time  , and     is k-vector of individual and time-specific 

contextual drivers including subsidies. The functional coefficients, namely      which is the 

intercept and      which stands for a p-vector of parameters representing technological 

relationship, are unknown smooth function of    . In the convoluted error term (           ), 

          
   is a two-sided error term representing the usual statistical noise and 

                
         is non-negative error term representing technical inefficiency. To 

ensure its positivity and to account for heteroscedasticity (Caudill et al., 1995), the 

inefficiency term         is parameterised as                       , 

where                , with                      . Sun and Kumbhakar (2013) 

underline that the production frontier in [7] is different from the conditional expectation of 

   , since the convoluted error term does not have zero mean. As a solution for this problem, 

they suggest rewriting expression [7] as follows:   

                  
                                  [8]     

                    
            

             
            

where                     ;                     ;      is defined as        

         
        and    

        
  .The semi-parametric smooth-coefficient stochastic frontier  

model [8] can be consistently estimated using a two-step. In the first step, in contrast to Sun 

and Kumbhakar (2013) who use the local constant estimator (see Nadaraya, 1964; Watson, 

1964), we use the local linear estimator due to its advantage to automatically correct edge bias 

(Fan and Gijbels, 1992; Li and Racine, 2007; Su et al., 2009). The local linear procedure 

estimates simultaneously the unknown functional coefficients and their first order derivatives 

with respect to the continuous contextual drivers, categorical contextual drivers being treating 

in local constant fashion.  More formally,      is approximated locally at a given continuous 

contextual driver      by a linear function           
     

        
        obtained by taking 

the first order Taylor expansion of      at     given    
   in the neighbourhood of    . Then, the 

local linear estimator of      is given by minimising the following weighted least-squares 

setting on       :     

 

                 
     

         
          

 
       

                    [9] 

 

Where                     is p-multivariate generalized kernel function accounting for 

continuous and discrete variables (Li and Racine, 2010; De Witte and Kortelainen, 2013) 

which controls the weights, and      is a set of bandwidths controlling the size of the 

neighbourhood of    . The bandwidths are selected using least-square cross-validation method 

(Li and Racine, 2007).    
     is a vector of continuous contextual drivers, and    

     

stands for a vector of discrete contextual drivers. Then, the local linear regression estimator 
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for the functional coefficient is given by defining a matrix   of          with 

    
     

      
      

 
  as its i-th row such that expression [9] can be rewritten as :  

                      
 
                          [10] 

With              
 ,                  , and                  .  So the weighted 

least-squares formalisation leads to following local linear regression estimator 

                             [11] 

In the second step, the convoluted error term estimated from the first step is parameterized by 

characterizing the dependence of its inefficiency component on    ; this is done by specifying 

the likelihood function using standard stochastic frontier technique (see, Jondrow et al., 1982; 

Sun and Kumbhakar, 2013). To explore the influence of subsidization on the marginal 

product of the inputs, we non-parametrically regress technological parameters on subsidies 

and the other contractual drivers using the kernel local linear estimator.   

2.3 Semiparametric smooth-coefficient conditional efficiency  

The third approach used here is an extension of the semiparametric smooth-coefficient model 

(Robinson, 1989; Li et al., 2002; Li and Racine, 2010) following Färe and Lovell (1978) and 

Atkinson and Cornwell (1993; 1994). Our specification can also be thought of as a semi-

parametric version of the standard conditional efficiency method. We call the suggested 

approach the semiparametric smooth-coefficient conditional efficiency (SPSC-CE) approach. 

More concretely, using the semiparametric smooth-coefficient setup, the SPSC-CE model 

characterises farm technical efficiency in the sense of Färe and Lovell (1978) and Atkinson 

and Cornwell (1993; 1994) who convincingly demonstrate that technical efficiency can be 

modelled as a factor that scales output from the production frontier. From this view the 

production process can be modelled as follows:    

                   
               [12] 

In this setup,     is the log of the output for the i-th farm at time  ;     is the log of p-vector of 

inputs used by the i-th farm at time  ; and     denotes the usual idiosyncratic error term.       

denotes the intercept and       is a vector of technological relationship parameters.       and 

     are unknown smooth functions of contextual drivers    . In other words,       and      

are unknown smooth-varying parameters to be estimated non-parametrically. In a compact 

formulation, expression [12] can be rewritten as follows:  

                  
   

      

      
            [13] 

                 
               

where                         
 
 
 

 is a vector of unknown smooth function of    . Following 

Li et al. (2002), Li and Racine (2007), and Su et al. (2009), expression [13] can be estimated 
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using local linear least squares method described in [9], [10], and [11], after having applied 

the Constrained Weighted Bootstrapping (CWB) method to ensure the positivity of 

technological parameters. 

According to Färe and Lovell (1978) and Atkinson and Cornwell (1993; 1994), technical 

inefficiency is considered as the failure to obtain the maximal attainable output from a set of 

inputs given the available production technology. That is, technical inefficiency can be 

modelled as a factor that scales actual output down from the production frontier. Also, in line 

with this conceptualisation, we formally define the conditional technical efficiency as follows:  

                              with             
             

              
    [14] 

where and          is a farm-specific scaling factor that captures inefficiency effects, i.e., the 

degree to which a farm produces less than the maximal attainable output,               . 

              is the production function defined in [13].  The conditional technical efficiency 

is given by a percentage of the frontier. An interesting strong point of this efficiency measure 

is that it allows for time-varying technical efficiency as in Henderson and Simar (2005). The 

idea is to evaluate the frontier and the non-frontier farms for each time period.  

Finally, we non-parametrically regress the marginal product of each input and the conditional 

efficiency measure, on contextual drivers, to explore their influence on the production 

process, using the local linear estimator. Our semiparametric smooth-coefficient conditional 

efficiency (SPSC-CE) model presents two main appealing features. First, contrarily to the 

standard conditional efficiency framework, the SPSC-CE model provides conditional gradient 

estimates and accounts for statistical noise. Second, in contrast to the SPSC-SFA, the SPSC-

CE model does not impose distributional assumption on the inefficiency component. This is 

an interesting feature, because under a priori assumption distributions for the inefficiency 

term, efficiency analysis can be seriously misleading (Tran and Tsionas, 2009; Parmeter et al., 

2010).  

 

3. Data description  

For implementing the above specified models, we use a balanced panel data of 1,584 

observations from 396 French farms located in the French region Meuse over the period 

2008-2011. These data are bookkeeping data from a sample of clients of a regional 

accounting office. Our dataset includes information on farm production structure, on farm 

financial results, and on agricultural subsidies. For characterizing the production process we 

use one aggregated output, four classical inputs, and some contextual factors. The aggregated 

output is measured as the value of the total production in Euros including crop output, 

livestock output, and other outputs. The four classical inputs include the utilised agricultural 

area (UAA) in hectares, the labour used in annual working units (AWU) which are full-time 

yearly equivalents, the value of the farm capital in Euros, and the value of intermediate 

consumption in Euros. All values are expressed in 2008 constant Euros.  

The contextual factors include the subsidy rate, i.e., the ratio of CAP Single Farm Payments 

(SFP) received to farm net income; a dummy variable equal to one for individual farms, and 

zero otherwise (i.e. partnerships or companies); and an agricultural sub-region dummy. Notice 
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that empirical studies usually use the total aggregated subsidy received by a farm for 

analysing the subsidy effect. However, as shown in Minviel and Latruffe (2014), it is suitable 

to use each type of subsidy separately, since the aggregated subsidies can mask the effect of 

specific subsidies like investment subsidy. Since the different types of subsidies are not 

available in our dataset, we use only the SFP as proxy for subsidization. The SFP are 

decoupled payments received by farms per hectare of eligible area not subject to production 

obligations. Following Zang et al. (2012), the contextual drivers also include a time trend 

variable for capturing technical change, and a dummy variable for controlling for farm-

specific fixed effect. The rationale for using time as contextual drivers is that greater output 

can be produced over time for a given set of inputs. That is, although time is not a traditional 

input it can shift the production through the so-called learning-by-doing effect. However, in 

order to investigate the subsidy effect on technical change, we alternatively estimate the 

semiparametric smooth-coefficient conditional efficiency (SPSC-CE) model and 

semiparametric smooth-coefficient stochastic frontier (SPSC-SFA) model with the time 

variable as a neutral shifter. For theoretical consistency of our estimations we impose 

monotonicity and concavity constrains using the Constrained Weighted Bootstrapping (CWB) 

method proposed by Du et al. (2013). All monetary variables are deflated using related price 

index 2011 as the base year. Summary statistics for the main variables used are presented in 

table 1. 

 

Table 1. - Summary statistics for the main variables used  

 Mean St. Dev. Minimum Maximum 

Output (Euros) 460,258 260,404 103,058 2,036,386 

UAA (hectares) 208.25 100.55 58.13 689.89 

Labour (AWU) 2.12 1.04 0.20 7.00 

Intermediate consumption (Euros) 320,237 171,132 83,224 1,141,671 

Capital (Euros) 440,668 273,221 27,324 1,991,720 

Individual farm (dummy) 0.81 0.39 0 1 

Sub-region 1(dummy) 0.58 0.49 0 1 

Subsidy (SFP) per farm (Euros) 58,037 29,857 14,355 213,069 

Subsidy rate (SFP/income)  0.13 0.03 0.04 0.30 

Number of observations 1,584    

 

 

4. Empirical results  

The main estimations are implemented within the R software (R Development Core Team, 

2012) using the np package (Hayfield and Racine, 2008) for non-parametric analyses and the 

frontier package (Coelli and Henningsen, 2013) for the second-stage estimation of the semi-

parametric smooth-coefficient stochastic frontier model. Estimation results for the conditional 

efficiency model [expression 3 and 6], for the semiparametric smooth-coefficient stochastic 

frontier (SPSC-SFA) [equation 8], and for the semiparametric smooth-coefficient conditional 

efficiency (SPSC-CE) model [equation 13] are reported in table 2. Table 3 summarises the 

correlation of subsidies with the production process. In figure 1 we present the influence of 

subsidies on technological relationship parameters and on the efficiency factor based on 

expression [13]. This figure provides a full picture on the subsidy effects unlike table 2 and 

table 3 which present only the mean effects.  
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The goodness-of-fit statistics indicate that the semi-parametric smooth coefficient models fit 

the data well, but the goodness-of-fit for the conditional efficiency model is relatively low. 

This difference lies in the fact that the goodness-of-fit for the conditional efficiency model 

concerns only the explanation power of the contextual drivers. Globally, findings are 

consistent across the three models. This confirms the potential explanation power of the three 

specifications.   

 

Table 2.  Empirical estimates for the conditional efficiency model, the semiparametric 

smooth-coefficient SFA, and the semiparametric smooth-coefficient conditional 

efficiency model    

Regressor Conditional 

efficiency 

Smooth-coefficient 

SFA 

 Smooth-coefficient 

conditional efficiency   

(1) (2)  (1) (2) 

Production frontier       

Intercept  / 3.05*** 

(0.02) 

4.15*** 

(0.02) 

 2.95*** 

(0.02) 

3.33*** 

(0.02) 

Land  / 0.27 *** 

(0.002) 

0.34*** 

(0.002) 

 0.27 *** 

(0.002) 

0.34*** 

(0.002) 

Labour  / 0.09 *** 

(0.001) 

0.08*** 

(0.0006) 

 0.09 *** 

(0.001) 

0.08*** 

(0.0006) 

Intermediate consumption  / 0.61*** 

(0.002) 

0.58*** 

(0.002) 

 0.61*** 

(0.002) 

0.58*** 

(0.002) 

Capital  / 0.05 *** 

(0.001) 

0.03*** 

(0.001) 

 0.05 *** 

(0.001) 

0.03*** 

(0.001) 

Time trend / / 0.006*** 

(0.0003) 

 / 0.006*** 

(0.0003) 

(In)efficiency effect       

Subsidy rate  -0.06 *** 

(0.003) 

0.28 *** 

(0.08) 

0.32** 

(0.13) 

 -0.36 *** 

(0.002) 

-0.34*** 

(0.001) 

Individual farm  0.007    *** 

(0.0001) 

-0.013 ** 

(0.007) 

-0.007 

(0.009) 

 0.03 *** 

(0.0004) 

0.03*** 

(0.0004) 

Time trend 0.0004** 

(0.0002) 

0.002 

(0.002) 

/  0.002*** 

(0.0002) 

 

/ 

Sub-region 0.0001*** 

(5.6E-06) 

-0.006 

(0.005) 

-0.01 

(0.009) 

 -2E-06 

(1.2E-06) 

-9.5E-05 

(2.8E-05) 

Mean efficiency  0.87 0.89 0.90  0.90 0.89 

R-Squared  0.22 0.97 0.96  0.97 0.96 

Number of obs. 1,584 1,584 1,584  1,584 1,584 
Note that in the conditional and SPSC-CE model a positive sign indicates a positive correlation with efficiency, while in the SPSC-SFA 
model a positive sign indicates a negative correlation with efficiency.  

1. Smooth-coefficient SFA  model (1) includes time as non neutral shifter 

2. Smooth-coefficient SFA  model (2) includes time as neutral shifter 
3. Smooth-coefficient conditional efficiency model (1) includes time as non neutral shifter 

4. Smooth-coefficient conditional efficiency model (2) includes time as neutral shifter 

5. Bootstrapped standard error in brackets  

 

The mean technical efficiency (0.87) estimated from the fully nonparametric conditional 

efficiency model is slightly lower from the ones (0.89-0.90) estimated from the 

semiparametric smooth-coefficient models. It is intuitive that the estimated efficiency is lower 

given the assumptions made on the data generating process (deterministic versus stochastic) 

in each modelling framework. In fact, from the deterministic nature of the data generating 

process within the full nonparametric conditional efficiency framework, all deviations from 
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the production frontier are attributed to inefficiency. While given the stochastic nature of the 

data generating process within semiparametric smooth-coefficient models, deviations from 

the production frontier are divided into statistical noise and inefficiency. Interestingly, 

technical efficiencies estimated from the SPSC-SFA model and from our SPSC-CE model are 

quite similar.    

Regarding the determinants of technical efficiency, within the conditional efficiency 

framework and the SPSC-CE model a positive sign indicates a positive correlation with 

efficiency. The opposite holds for the SPSC-SFA model, where a positive sign reveals a 

negative correlation to efficiency.  

The three specifications highlight that SFP influence negatively farm technical efficiency.  

This inverse nexus is consistent with the most common findings on the relationship between 

public subsidies and farm technical efficiency in the literature (see Minviel and Latruffe, 

2014, for a meta-analysis). The standard explanation for the inverse relationship lies in the 

welfare effect of subsidization which results in distorting farmers’ incentive to work 

efficiently (Zhou and Oude Lansink, 2010; Kumbhakar et al., 2012; Bojnec and Latruffe, 

2013, Sipiläinen et al., 2014). As shown in figure 1 in the top-left panel from our 

semiparametric smooth-varying coefficient model, the effect of subsidies on technical 

efficiency is not monotonic. This result contrasts with Zhou et al. (2011) who find a 

monotonic negative effect of subsidization on farm technical efficiency. Interestingly, in 

terms of policy implication, our result suggests that there exists a threshold value for the 

subsidy-rate under which subsidization does not distort input optimal use. 

For the production function, the semiparametric smooth-coefficient stochastic frontier (SPSC-

SFA) and the semiparametric smooth-coefficient conditional efficiency (SPSC-CE) provide 

similar results since they have the same modelling grounds. But their intercepts are different 

since from the SPSC-SFA model the intercept is given by                       (see 

expression 8). Within the smooth-coefficient models, the estimates indicate that all 

technological relationship parameters are significant at the 1%-level. Since input and output 

variables are in logarithmic form, the gradients for conventional inputs represent output 

elasticities of inputs. The estimates show that intermediate consumption has the highest 

elasticity. The sum of these elasticities (1.02 and 1.03 respectively) indicates that the 

production process exhibits slightly increasing returns to scale. In the models with time as 

neutral shifter, the gradient for the time trend variable is positive, suggesting technical 

progress for the period of our study. Likewise, when time is modelled as a contextual driver, 

results from table 3 also show technical progress. In the case where time is modelled as 

neutral shifter, table 3 indicates that technical progress is negatively affected by SFP. This 

suggests that SFP lead to technical regress for the period of our study.  In addition, table 3 

shows that SFP have statistically significant correlations at the 1% level on elasticities for 

land, labour
3
, intermediate consumption and capital. The influence of subsidy is positive on 

land elasticity, but negative on labour, intermediate consumption, and capital elasticities. This 

suggests that subsidies may influence input use, confirming theoretical expectations 

                                                           
3
 Only for the SPSC-CE model with time-neutral shifter 
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(Hennessy, 1998; Serra et al., 2008).  More precisely, on the one hand, our results indicate 

that SFP impact positively land marginal elasticity: in other words, they give incentives to 

farmers to use more land, implying that subsidies are complementary with UAA. On the other 

hand, the results reveal that SFP reduce the marginal elasticity of labour, intermediate 

consumption and capital, indicating that they are substitutable with these conventional inputs.   

Table 3. -  Summary of the influence of subsidies on the production process 

 SPSC-SFA 

model 

SPSC-CE model  

with time-non 

neutral shifter 

SPSC-CE model  

with time-

neutral shifter 

Overall influence of subsidy (      ) -0.26 -0.31 -1.04 

Technical change (      ) 0.047 0.049 0.006 

(0002) 
Subsidy influence on technical change [          ] / / -0.20 

(0.02) 
Subsidy influence on land elasticity [           ] 1.30 

(0.06) 
1.30 

(0.06) 
1.57 

(0.10) 
Subsidy influence on labour elasticity [           ] - 0.01 

(0.03) 
- 0.01 

(0.03) 
-0.16 

(0.06) 
Subsidy influence on intermediate consumption elasticity  

[           ] 

- 0.89 

(0.06 
- 0.89 

(0.06 
-1.00 

(0.12) 
Subsidy influence on capital elasticity [          ] -0.35 

(0.03) 
-0.35 

(0.03) 
-0.91 

(0.05) 
Subsidy influence on land marginal productivity  

[            ] 

-0.46 

(0.002) 
-0.47 

(0.002) 
-0.54 

(0.002) 
Subsidy influence on labour  marginal productivity   

[            ] 

-0.04 

(0.002) 
-0.04 

(0.002) 
-0.14 

(0.0004) 
Subsidy influence on intermediate consumption  marginal 

productivity [            ] 

-0.06 

(0.001) 
-0.06 

(0.001) 
-0.06 

(0.0005) 
Subsidy influence on capital marginal productivity  

[           ] 

0.02 

(0.0001) 
0.02 

(0.0001) 
0.02 

(0.0001) 
Bootstrapped standard error in brackets  

 

Concerning the effects of subsidization on marginal productivity, we find that (table 3) SFP 

correlate negatively to land marginal productivity. This correlation contrasts with their 

positive correlation on land marginal elasticity. One possible explanation for this is that 

subsidization encourages farmer to operate more land since payments are related to 

agricultural land, but discourages an optimal use of the available land. In the same vein, the 

influence of SFP on capital marginal productivity is positive, contrarily to their negative 

correlation with capital elasticity. This suggests that subsidization is not automatically linked 

to capital investment, but may enhance capital marginal productivity perhaps by replacement 

investment.  Finally, similarly to their negative influence on labour and intermediate 

consumption elasticities, SFP have a negative influence on labour and intermediate 

consumption marginal productivity. It can also be seen in table 3 that the overall influence of 

subsidization on production is negative.   

Figure 1 gives a full picture on the influence of subsidization. This contrasts to table 2 and 

table 3 which present only mean effects. The upper and lower solid lines are 95 percent 

confidence intervals. Figure 1 confirms that the overall correlation of SFP with the production 

process is negative since only the correlation with capital marginal productivity is positive. 

That is, for our sample of French farms, an increase in SFP leads to a decrease in total 
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production by decreasing the efficiency with which inputs are used, by reducing marginal 

productivity of some inputs, and by generating technical regress. However, the figure 

indicates that the subsidy effect on the production process is not necessarily linear.  For 

instance the figure shows that the effect of SFP generally exhibits a U-shaped form, while 

only one branch of the curves is statistically significant. This suggests that there exist a 

threshold value for the subsidy-rate over which subsidization acts negatively in the production 

process. This highlights that the semiparametric smooth-coefficient stochastic frontier (SPSC-

SFA) and the semiparametric smooth-coefficient conditional efficiency (SPSC-CE) model 

provide additional features improving our understanding on how subsidization acts in a 

production process.  

 

Figure 1. Influence of subsidies on technical efficiency, input marginal productivity and 

technical change   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: the effect on the following variable is shown clockwise starting from the top-left panel: technical efficiency, UAA marginal 

productivity, intermediate consumption marginal productivity, technical change, capital marginal productivity and labour marginal 

productivity. 
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5. Concluding remarks 

To improve the understanding on how subsidization acts in a production process, this paper 

uses the conditional efficiency model, the semi-parametric smooth-coefficient stochastic 

frontier model, and develops a semiparametric smooth-coefficient conditional efficiency 

setting, based on theoretical considerations that subsidization may alter marginal product of 

traditional inputs.  The main advantage of these three specifications lies in the fact that they 

model the production process conditional on exogenous-contextual drivers (including 

subsidies) which are neither input nor output, but form part of the backdrop of production 

decision. In theoretical consistency fashion, by treating subsidies as facilitating inputs, these 

models allow us to investigate their influence on the efficiency with which inputs are used 

and on the input-output space. Beside their global modelling assumption of treating subsidies 

as facilitating input, i.e. as additional cash flow that may alter input marginal productivity and 

technical efficiency, these models are complementary since each one pursues an interesting 

feature of the standard efficiency analysis framework.   

Considering technical efficiency, input marginal productivity, and technical change as three 

channels through which subsidization may influence the production process, estimation 

results on a sample of French farms in 2008-2011 suggest that direct payments impact 

negatively agricultural production (i) by decreasing farm technical efficiency, (ii) by 

distorting marginal productivity of land, labour, and intermediate consumption, and (iii) by 

leading to technical regress. The results also suggest that subsidies are complementary with 

utilized agricultural area. Another interesting finding is that the subsidization effects are in 

essence non-monotonic.  These results can be useful for policy makers, in the sense that they 

provide a global vision on how subsidization influence in a production process.   

The suggested methodology can be applied to other sectors as well. As there are subsidies in 

various sectors (e.g., education, health care, firms) we suggest that further research should 

apply the suggested framework to these fields. This will expand the knowledge-base on 

subsidies. To facilitate other researchers, the R-code is available upon request.  

   

  



15 
 

References  

Atkinson, S.E., Cornwell, C. (1993). Measuring technical efficiency with panel data: A dual 

approach. Journal of Econometric 59: 257-261.  

Atkinson, S.E., Cornwell, C. (1994). Estimation of output and input technical efficiency using 

a flexible functional form and panel data. International Economic Review 35(1): 245-255.  

Battese, G., Coelli, T. (1995). A model for technical inefficiency effects in a stochastic 

frontier production function for panel data. Empirical Economics 20: 325-332. 

 

Bojnec, S., Latruffe, L. (2013). Farm size, agricultural subsidies and farm performance in 

Slovenia. Land Use Policy 32: 207-217.  

 

Caudill, S.B., Ford, J.M., Gropper, D.M. (1995). Frontier estimation and firm-specific 

inefficiency measures in the presence of heteroskedasticity. Journal of Business and 

Economic Statistics 13(1): 105-111. 

 

Cazals, C. Florens, J.-P., Simar, L. (2002). Nonparametric frontier estimation: A robust 

approach. Journal of Econometrics 106: 1-25. 

 

Coelli, T., Henningsen, A. (2013). Frontier : Stocahstic Frontier Analysis. R package version 

1.0. http://CRAN.R-Projet.org/package=frontier. 

Daraio, C., Simar, L. (2005). Introducing environmental variables in nonparametric frontier 

models: a probalistic approach. Journal of Productivity Analysis 24(1):  93-121. 

 

Daraio, C., Simar, L. (2007). Advanced Robust and Nonparametric Methods in Efficiency 

Analysis: Methodology and Applications. New York, NY: Springer.  

 

De Witte, K., Kortelainen, M. (2013). What explains the performance of students in a 

heterogeneous environment? Conditional efficiency estimation with continuous and discrete 

environmental variables. Applied Economics 45 (17): 2404-2412. 

  

Du, P., Parmeter, C.F., Racine, J.S. (2013). Nonparametric kernel regresion with multiple 

predictors and multiple shape constraints. Statistica Sinica 23: 1343-1372. 

European commission (2013a). EU Farms Economics 2012, based on FADN data.  

European commission (2013b). Financial report from the Commission to the European 

Parliament and the Council on the European agricultural guarantee fund 2012 financial year.  

 

Färe, R., Lovell, C.AK., (1978). Measuring the technical efficiency of production. Journal of 

Economic Theory 19: 150-162.  

 
Hayfield, T., Racine, J. S. (2008). Nonparametric econometrics: The np package. Journal of 

Statistical Software 27: 1–32. 

 



16 
 

Henderson, D.J., Simar, L. (2005). A Fully Nonparametric Stochastic Frontier Model for 

Panel Data. Paper presented at the 9
th

 European Workshop on Efficiency and Productivity 

Analysis, Brussels, Belgium. 

 

Hennessy, D.A. (1998). The production effects of agricultural income support policies under 

uncertainty. American Journal of Agricultural Economics 80 (1): 46-57. 

Jondrow, J., Lovell, C.A.K., Materov, I.S., Schmidt, P. (1982). On the estimation of technical 

inefficiency in stochastic frontier production models. Journal of Econometrics 19: 233–238. 

 

Kleinhanß, W., Murillo, C., San Juan, C. and Sperlich, S. (2007). Efficiency, subsidies, and 

environmental adaptation of animal farming under CAP. Agricultural Economics 36: 49-65. 

Kumbhakar, S.C. and Lien, G. (2010). Impact of subsidies on farm productivity and 

efficiency. In Ball, V.E., Fanfani, R. and Gutierez, L. (eds), The Economic Impact of Public 

Support to Agriculture, Studies in Productivity and Efficiency. New York, NY: Springer, 109-

124. 

 

Kumbhakar, S.C., Lien, G., Hardaker, J.B. (2012). Technical efficiency in competing panel 

data models: a study of Norwegian grain farming. Journal of Productivity Analysis, DOI 

10.1007/s11123-012-0303-1. 

 

Latruffe, L., Minviel, J.J. (2014). Impact of subsidies on farm technical efficiency: A 

comparison of alternative modelling frameworks. Unpublished manuscript, INRA, UMR 

SMART-LERECO.     

 

Li, Q., Huang, C. J., Li, D., Fu, T.T. (2002). Semiparametric smooth coefficient models. 

Journal of Business and Economics Statistics 20: 412–422. 

 

Li, Q., Racine, J. (2004). Cross-validated local linear nonparametric regression. Academia 

Sinica 14: 485-512. 

 

Li, Q., Racine, J. (2007). Nonparametric Econometrics: Theory and Practice. Princeton 

University, Princeton and Oxford. 

 

Li, Q., Racine, J. S. (2010). Smooth varying-coefficient estimation and inference for 

qualitative and quantitative data. Econometric Theory 26: 1607-1637. 

 

Martin, J.P. and Page, J.M. Jr. (1983). The impact of subsidies on X-efficiency in LDC 

industry: Theory and empirical test. The Review of Economics and Statistics 64: 608-617. 

McCloud, N. and Kumbhakar, S.C. (2008). Do subsidies drive productivity? A cross-country 

analysis of Nordic dairy farms. In Chib, S., Griffiths, W., Koop, G. and Terrel, D. (eds), 

Bayesian Econometrics, Advances in Econometrics. Bingley, UK: Howard House, Wagon 

Lane, 245-274. 

 

Minviel, J.J., Latruffe, L. (2014). Meta-regression analysis of the impact of agricultural 

subsidies on farm technical efficiency. Paper presented at the 8
th

 North American Productivity 

Workshop, Ottawa, Canada.  

 



17 
 

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications 

9(1): 141–142.  

 

OECD, (2012). Agricultural policy monitoring and evaluation 2012: OECD countries, OECD 

publishing. http://dx.doi.org/10.1787/agr_pol-2012-en  

OECD (2013). Producer and Consumer Support Estimates: Agricultural support estimates 

2013, OECD Agriculture Statistics, http://dx.doi.org/10.1787/pse-table-2013-1-en 

Parmeter, C.F., Wang, H.-J., Kumbhakar, S.C. (2010). Semiparametric Estimation of 

Determinants of Inefficiency with Application to Financing Constraints. Paper presented at 

the North American Productivity Workshop at the Rice University, Houston, USA.  

 
R Development Core Team (2012). R: A Language and Environment for Statistical 

Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051 07-0. 

 
Serra, T., Zilberman, D. and Gil, J.M. (2008). Farms’ technical inefficiencies in the presence 

of government programs. The Australian Journal of Agricultural and Resource Economics 

52: 57-76. 

 

Sipiläenen, T., Kumbhakar, S.C. and Lien, G. (2014). Performance of dairy farms in Finland 

and Norway from from 1991 to 2008. European Review of Agricultural Economics 41 (1): 

63-86. 

 

Su, L., Chen, Y., Ullah, A. (2009). Functional coefficient estimation with both categorical and 

continuous data. In Li, Q., Racine, J.S. (eds), Nonparametric Econometric Methods, Advances 

in Econometrics. Bingley, UK: Emerald Group Publishing Limited, 25: 131-167.  

 

Sun, K., Kumbhakar, S.C. (2013). Semiparametric smooth-coefficient stochastic frontier 

model. Economics Letters 120: 305-309. 

 

Tran, K.C., Tsionas, E.G. (2009). Estimation of nonparametric inefficiency effects stochastic 

frontier models with an application to British manufacturing. Economic Modelling 26: 904–

909.  

 

Watson, G. S. (1964). Smooth regression analysis. Sankhy: The Indian Journal of Statistics, 

Series A 26(4): 359–372. 

 

Zhang, R., Sun, K., Delgado, M.S., Kumbhakar, S.C. (2012). Productivity in China’s high 

technology industry: Regional heterogeneity and R&D. Technological Forecasting & Social 

Change 79: 127-141.  

 

Zhu, X., Oude Lansink, A. (2010). Impact of CAP subsidies on technical efficiency of crop 

farms in Germany, the Netherlands and Sweden. Journal of Agricultural Economics 61(3): 

545-564. 

 

Zhu, X., Karagiannis, G., Oude Lansink, A. (2011). The impact of direct income transfers of 

CAP on Greek olive farms’ performance: Using a non-monotonic inefficiency effects model. 

Journal of Agricultural Economics 62(3): 630-638.  


