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For over three decades, I have believed

that all problems of causal inference

should be viewed as problems of missing

data: the potential outcomes under the

not-received treatment are the missing

data. A straightforward and valid way

to think about missing data is to think

about how to multiply impute them.

D.B. Rubin

Direct and Indirect Causal Effects via

Potential Outcomes

1 Introduction

This paper aims to take Rubin’s proposition (2004, p. 167), recently developed in Gutman

and Rubin (2013), seriously. This proposition can be used as a starting point for an answer to

the controversy surrounding the causal inference methodology. In effect, there is an ongoing

debate on the theory of matching and randomization for causal inference, dating back to the

1990s (see for example (Heckman and Smith, 1995)). Quasi-experimentation using propensity

score matching appear as an a-theoretical alternative to a structural econometric approach

which is viewed by some authors as not suitable for ”a cautious and risk-averse investigator

[who] may care primarily about being right”(Sobel, 2005, p. 128). My approach is built on

this controversy. The idea is to design the experiment explicitly : we have to show clearly the

quantities subject to change due to the various different treatments. We have to open the black

box on our assumptions as Leamer (1983, 1985) noted. Furthermore, because of the Bayesian

background, my approach is reflexive: we can assess the impact of various informative or

uninformative priors on the results. This thought experiment approach can be therefore of

interest to any pragmatist, institutionalist or reflexive economic methodology (Davis and

Klaes, 2003). My proposition is that this method can better handle the controversy on the

various models for causal inference, some making stronger assumptions than others, than the

frequentist method (see a recent paper of Heckman et al. (2014) for an argumentation). This

proposition clearly fits into Heckman’s causality econometric framework (see table 1) and it is

also more natural for doing the necessary sensitivity analysis as proposed by Heckman (2005).

In its spirit this proposition is close to those of Imai and Van Dyk (2004); Ho et al. (2007,

2011) : matching as a first step preprocessing data and ordinary parametric method as a

second step. The theoretical foundation of this procedure came from the seminal work of

Rosenbaum and Rubin (1983). After matching, the sample is balanced on observed vari-

ables and therefore the postmatching analysis can be estimated as is done in randomized

experiments1. For example Bravo-Ureta et al. (2012) estimated a sample selection stochastic

1see Guo and Fraser (2010, p. 154) for a general presentation.
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Table 1: Three Distinct Tasks Arising in the Analysis of Causal Models from Heckman
(2008, p.2)

Task Description Requirements

1 Defining the set of hypotheticals or
counterfactuals

A scientific theory

2 Identifying causal parameters from
hypothetical population data

Mathematical Analysis of
point or set identification

3 Identifying parameters from real
data

Estimation and testing theory

frontier analysis after matching on participation in an agricultural public policy.

This procedure is applied to the relation of quality and brand policies with the perfor-

mance of agricultural cooperatives. Various authors have shown that cooperatives can develop

successful branding programs as a way to ”break out” of the commodity price cycle (Bev-

erland, 2007). Branding and quality signalization can be mixed in agricultural cooperatives

(Kontogeorgos, 2012). To my knowledge few papers had been written on this topic, Soboh

et al. (2009) didn’t mention anything related to brand or quality in their literature review.

My contribution will try to fill this gap.

The paper is organized as follows. In the next section, I expose the problem of non-binary

treatment and multiple outcomes, the theory of multiple imputation dealing with the problem

of potential outcomes and the quantile regression approach to frontier analysis. In the third

section, I present a case study based on a French survey on small agricultural cooperatives.

I study the impact of quality and brand policies on production and export performance.

Finally, the generalization of this method will be discussed in the conclusion.

2 Causal Inference as a Missing Data Problem

Since its apparition in the late 1970s, and its development by D.B Rubin (see (Rubin, 1987,

1996)), multiple imputation has been applied to a variety of areas. In a comprehensive

handbook, S. Van Buuren notes that multiple imputation has been extended for dealing

with measurement errors 2, comparability of international surveys and “can also be useful

to correct for imbalances in observational studies. No such studies seem to have appeared

yet”(Van Buuren, 2012, p.255). To our knowledge, few studies can be cited (See(Taylor and

Zhou, 2009; Bondarenko and Raghunathan, 2010; Piesse et al., 2010; Gutman and Rubin,

2013)), all based on the works of D.B. Rubin (See (Rubin, 2004, 2005, 2006; Jin and Rubin,

2008). My proposition is a direct extension of these previous works3.

Gelman (2011) notes three different problems for causal inference: the first is the difficulty

of generalizing from experimental to realistic settings; the second is studying questions of

2see Blackwell et al. (2014) for a paper on the ability of multiple imputation to handle measurement
errors.

3Therefore readers may be interested in reading these studies.
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forward causation in observational studies or experimental settings with missing data (the

traditional focus of causal inference in the statistics and biostatistics literature); and the

last is to recall that missingness is inherent in the counterfactual definition of causal effects.

Every counterfactual or potential outcome can be conceived in a theoretical missing values

framework. A counterfactual is a potential outcome or the state of affairs that would have

happened in the absence of the cause (Guo and Fraser, 2010). By definition, it is not observed

in real data and referred to a hypothetical situation. This ”fundamental problem of causal

inference” (Holland, 1986) forces the researcher to use all known information (data, beliefs,

etc.) to find a suitable value for this hypothetical situation in order to make valid inference.

Therefore the classical definition of ACE (Average Causal Effect) by Rubin (1978) which is the

average difference between potential outcomes under different treatments can be estimated

by multiple imputation.

2.1 Missing Data and Potential Outcomes

Using the notation of Gelman et al. (2014), we can write that an observation is said to be

MAR (Missing At Random)4 if conditional on the observed data the probability of being

missing is unrelated to the unobserved data.

P (I|y, φ) = P (I|yo, ym, φ) = P (I|yo, φ) (1)

with y partitioned between ym and yo respectively the missing and the observed part of y,

I an inclusion indicator with I = 1 if y is observed and I = 0 if y is missing, and φ the

parameters governing the missing data mechanism.

With θ the parameters of the data model, we have

P (yo, I|φ, θ) = P (I|yo, φ)P (yo|θ) (2)

we have: yo = (yo,1, yo,0), ym = (ym,1, ym,0) and I can be seen as the indicator choice of

the treatment.

Therefore, the potential outcome framework makes it clear that causal inference may be

regarded as a missing-data problem, as illustrated below (Piesse et al., 2010).

Table 2: Illustration of missing-data status among potential outcomes with two treat-
ment levels

Treatment status Y (0) Y (1)

T = 0 Observed Not observed
T = 1 Not observed Observed

The standard one binary treatment framework can be easily extended to multiple binary

treatments. For example, with two binary treatments T1 and T2, we have:

4an observation is said to be MCAR (Missing Completely At Random) if the probability of being
missing is unrelated to the observed and unobserved data on that unit.
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Table 3: Illustration of missing-data status among potential outcomes with two binary
treatments

Treatment status Y (0, 0) Y (1, 0) Y (0, 1) Y (1, 1)

(T1 = 0, T2 = 0) Observed Not observed Not observed Not observed
(T1 = 1, T2 = 0) Not observed Observed Not observed Not observed
(T1 = 0, T2 = 1) Not observed Not observed Observed Not observed
(T1 = 1, T2 = 1) Not observed Not observed Not observed Observed

Here there are four potential states and only one is observed. We just have to impute

the three missing states and treat all four states as four observations for one individual on

the second step (using methods suitable for clustered data). This problem can be seen as an

aggregation problem of N independent surveys in only one survey, as in cross-national survey

(Van Buuren, 2012).

In order to tackle the high pattern of missingness, in addition to informative prior, other

assumptions can be done (for example exclusion restriction and instrumental variable that

are traditional in econometrics (Gelman and Hill, 2006)). In effect we may face a selection

problem : the values of y0 and y1 that are observed are not necessarily a random sample of

the potential y0 or y1 distributions. In the generalized Roy model (Heckman and Vytlacil,

2005), the agent choose y1 (respectively y0) if the net utility D∗ = y1 − y0 − C is positive

(respectively negative) with C the cost of moving from the benchmark state 0 of no-treatment

to the state 1 of treatment. This model is traditional identified by an exclusion restriction (a

variable present in the selection process is absent in the outcome equation), although it might

simply identified by the correlation of the residuals. As noted by Schafer and Kang (2008, p.

306) (see also (Gelman et al., 2014)), ”in causal inference, Multiple Imputation would require

us to make assumptions about the inestimable partial correlation between y1 and y0 given

the covariates. Although this may seem troubling, inferences about ACEs are not concerned

with what we assume about this parameter”.

2.2 A first preprocessing step using multiple Imputation Es-

timation

Various algorithms 5 can be used for the imputation of the data. The first is Multivariate

Imputation with Chained Equation (MICE) or Fully Conditionally Specified Models (FCS).

This algorithm uses a modified version of Gibbs sampler (White et al., 2011). A Bayesian

one (Su et al., 2011) is implemented in the R package MI. Although theoretical weakness

of this approach is that the specified conditional densities can be incompatible, simulations

show that it essentially produces unbiased estimates even when that condition is violated

(Van Buuren et al., 2006). Furthermore as A. Gelman noted: “One may argue that having

a joint distribution in the imputation is less important than incorporating information from

other variables and unique features of the dataset (e.g., zero/nonzero features in income

5See the relevant papers for the description of the different algorithms.
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components, bounds, skip patterns, nonlinearity, interactions)” (Gelman, 2004). Another

possibility is to use MCMC (Markov Chain Monte Carlo). A multivariate normal version

modified with logical bounds on 0 and taking account the clustering of observations (Honaker

and King, 2010) is implemented in the R package AMELIA (Honaker et al., 2011). Divide

the data matrix D into an observed and a missing part, with D = {Dobs, Dmis}. D is assume

to be multivariate normal D ↪→ N(µ,Σ) with mean µ and variance Σ. Missing values Ỹ mis
ij

for the observation i and the variable Yj are imputed from a linear regression:

Ỹ mis
ij = Yi,−j .β̃ + ε̃i (3)

with β the regression coefficients calculated deterministically from µ and Σ. The algorithm

proposed in AMELIA is based on EMB (Expectation-Maximization with Bootstrapping)

(see Honaker and King (2010, p. 577)). It generates estimates of the missing elements based

on the observed part of D. In the Expectation-step, missing values are estimated with a

generalized version of the previous equation based on the current estimates of µ and Σ and

the observed data. In the Maximization-step, a new estimate of µ and Σ is computed from

the current version of the completed data. These steps are repeated until convergence of the

iterations.

Various authors evaluate these different procedures. In general, semi-parametric methods

like PMM (Predictive Mean Matching) seem to perform well and can be seen as a good

work-around (Van Buuren, 2012; Su et al., 2011; Yu et al., 2007) of other procedures. But in

presence of high amount of missingness, which is the case of our approach, bias can appear,

as these procedures only imputed observations in the range of observed values. Multivariate

normal with logical bounds can be more robust as one can use ridge prior (Honaker and

King, 2010) (see next section). On the other hand, Multivariate normal with logical bounds

may be less robust than PMM against misspecification of imputation model (and presence of

skewed distributions) (Marshall et al., 2010; Van Buuren, 2012; Kropko et al., 2014). We can

use a ridge prior in order to tackle the problem of high missingness. It helps with numerical

stability by smoothing estimated covariances toward zero without changing the means or

variances (Honaker and King, 2010). This prior can be regarded as a form of empirical Bayes

inference (see (Schafer, 1997), a method in which the prior distribution is estimated from the

data 6.

An alternative is a Bayesian conditional multiple imputation with an appropriate prior

that can stabilize the estimated potential outcomes. Gelman et al. (2008) propose a weakly

informative prior, which is ”an attempt to let the data speak while being strong enough to

exclude various unphysical possibilities which, if not blocked, can take over a posterior distri-

bution in settings with sparse data” (Gelman, 2009, p. 176). As observed by Rubin (2004),

we can place restrictions on the possible values of the potential outcomes using Bayesian prior

distributions. The priors used in both multiple imputation algorithms have in common to

6In contrast to standard Bayesian methods, for which the prior distribution is fixed by definition
prior to the observation of the data (Casella, 1985).
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lower the probability of extreme values and handle sparse data.

Our benchmark algorithm will be AMELIA because informative Bayesian priors about

individual missing data cells can be included. AMELIA has also an advantage in its flexibility

and its efficiency. The incorporation of priors follows basic Bayesian analysis where the

imputation turns out to be a weighted average of the model-based imputation and the prior

mean, where the weights are functions of the relative strength of the data and prior (Honaker

and King, 2010). These informative prior can come from the elicitation of expert belief or

from the analysis of previous studies (Garthwaite et al., 2005) and are helpful with sparse

data (Lenk and Orme, 2009).

Multiple imputation is subject to the problem of the inclusion of the substantive model

and the imputation model (Carpenter and Kenward, 2013). The substantive model and the

imputation model are said to be congenial (Meng, 1994). This principle implies that the num-

ber of predictors should be chosen as large as possible, beyond the variable of interest (used

in the econometric models). It reinforces the plausibility of the MAR assumption (Van Bu-

uren and Groothuis-Oudshoorn, 2011). This assumption of MAR is fundamental for most of

the multiple imputation approaches. Imai (2013) has proposed that the MAR assumption is

analogous to the unconfoundedness hypothesis in matching studies. This assumption is the

following:

(Y0,i, Y 1, i)⊥Ti|X (4)

Conditional on covariates X the assignment (or the choice observed) of a treatment Ti is

independent of the outcomes of non-treatment and treatment (respectively Y0,i and Y 1, i. In

other words, conditional on observed variables, the observation of the outcome is independent

of the expected outcome values. Therefore the outcome is missing at random. Note that

imputation based on MNAR (Mssing Not At Random) assumption, missingness depending

on the unobserved outcome, is currently under development (e.g. pattern-mixture model,

selection mode... (see Carpenter and Kenward (2013). As noted by Molenberghs et al. (2008),

the fundamental problems that are implied by these models are that tests of sensitivity to

unverifiable modeling assumptions are needed. Fortunately the overimputation procedure

(described in the next section) can be used as a way to graphically inspect the plausibility of

the MAR assumption.

Another important assumption, the SUTVA (Stable Unit Treatment Value Assumption)

imposes an exclusive restriction of no social interactions. In effect, this assumption imposes

the fact that the value of the outcome for a unit exposed to a treatment will be the same

no matter what treatments the other units receive. Procedures allowing for the relaxation of

this assumption are currently under development (Heckman and Vytlacil, 2005).
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2.3 Semi-parametric and mixture approaches to efficiency anal-

ysis

Various possible approaches to frontier analysis with parametric (such as stochastic frontier

analysis) or non-parametric (such as data envelopment analysis) methods are traditionally

used. An alternative is the semi-parametric approach of quantile frontier analysis. This

approach has been applied to the analysis of bank efficiency (Behr, 2010; Koutsomanoli-

Filippaki et al., 2013), health system performance (Liu et al., 2008), hotel industry efficiency

(Bernini et al., 2004) or the impact of information and communication technology within

manufacturing enterprises (Brasini and Freo, 2012).

Quantile regression models the quantiles of the conditional distribution of the outcome as

a function of observed covariates. For a quantile τ ∈ (0, 1) and a vector X of covariables, we

have (Kleiber and Zeilis, 2008):

Qy(τ |X) = XT
i β (5)

with i = 1, ..., N observations and β a vector of parameters to estimate, which are obtained

by the minimization of
∑

i γτ (yi − XT
i β). γτ denotes the piecewise linear function with

γτ (u) = uτ − I(u < 0) for I being the indicator function.

The quantile regression estimates for the top-quantile τb choosen as a benchmark describe

the production process of firms representing the efficient production frontier or benchmark

enterprises.

A byproduct of this approach is to define the usual Debreu-Ferrel technical output effi-

ciency as the ratio of the observed output to the output predicted by the production frontier

. For the quantile approach to frontier analysis, ŷbi is the output predicted for a firm i using

the parameters estimated for the benchmark quantile, and yi the observed outcome. So we

have:

TEi =
yi

ŷbi
(6)

with TEi the technical efficiency of the firm i. By construction, TEi = 1 for the firm

belonging to the benchmark quantile 7.

In order to control for industrial composition, Brasini and Freo (2012) define Ei the

efficiency outcome as

7Note that quantile approach, contrary to stochastic frontier analysis, has the capacity to estimate
negative technical efficiency that can appear when one estimate a profit function. In effect, firms can
throw away more than 100% of their potential profits (Berger and Mester, 1997). By construct, TEi

is bounded at 0 in the case of stochastic frontier analysis.
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Ei = −(lnTEi − ¯lnTEi) (7)

with ¯lnTEi the mean of the log-transformed technical efficiency over industry.

In contrast to stochastic frontier analysis, the quantile frontier analysis is flexible as it

doesn’t require structural parameters . There is a ongoing debate on the inclusion of quali-

tative variables in the stochastic frontier analysis as an traditional input or additional envi-

ronmental variable .Behr (2010) also shows that a quantile approach is a robust alternative

to stochastic frontier analysis: it is robust to outlier and measurement errors and can deal

with heteroscedasticity. One problem mentioned in the literature is that the choice of an ap-

propriate quantile to represent the frontier is relatively arbitrary (Saastamoinen, 2014). Behr

(2010) proposes to use the 95th quantile as a benchmark. What seems to be arbitrary for

some authors can easily be handled in a Bayesian approach. It simply means an assumption

on the share of the population which is efficient? This assumption logically depends on the

problem at hand (and prior information available) and on the size of the sample 8. Choosing

the 95th quantile as starting point, I conduct sensitivity analysis using other quantiles (90 or

99th).

I extend the previous studies by taking account one of the main features of our imputed

database: we have repeated measures for the same individuals. For example Koutsomanoli-

Filippaki et al. (2013) or Brasini and Freo (2012) conduct pooled analysis using a standard

quantile regression estimator. Various extension of this estimator (Koenker and Bassett,

1978) address the clustered aspect of data induced by repeated measures or longitudinal

design. Linear quantile mixed model algorithm (Geraci, 2014; Geraci and Bottai, 2014) can

handle multilevel data. As we have small cluster (with only 4 observations), we choose as a

benchmark procedure the algorithm proposed by Parente and Santos Silva (2013) which is

a quantile regression with clustered data. This algorithm is implemented in Stata with the

procedure qreg2 (see (Machado et al., 2013)). For the pooling approach, we can also use the

bayesian censored quantile regression estimator, estimated by MCMC. One advantage of this

estimator is that no information is lost from the first to the second step as we perform the

second step estimation procedure on each of the imputed sample and use all the distribution

to assess the confidence interval 9.

Export performance can be measured with the proportion of gross sales made abroad.

This is the export intensity. This outcome is a share and bounded at 0 and 1. Bottai et al.

(2010) propose a logistic quantile regression model. An important assumption is that positive

proportion, one and zero come from the same process. An alternative will be to estimate a

zero and one inflated beta regression (Ospina and Ferrari, 2012). This model assumes that

the response variable has a mixed continuous–discrete distribution with probability mass at

zero or one. It will estimate the probabilities of having the value 0 and/or 1 as separate

8The benchmark population needs to be sufficiently large for obtaining robust estimations.
9As proposed by S. Van Buuren.
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processes (using logistic regressions). The continuous component of the model (i.e. ]0, 1[) is

estimated by a beta regression:

f(y, µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1 (8)

with y ∈ (0, 1), Γ the gamma function, and µ and φ the parameters of the beta distribution

B(µ, φ).

In order to have unbiased estimates, the second-step regression has to be estimated on each

of the M imputed samples. For a parameter θ, the complete-data-estimation is a combination

of the M estimation:

θ̄M =
1

M

M∑
m=1

θ̇m (9)

The total variance associated with θ̄M is

TM =
1

M

M∑
m=1

Ŵm +
M + 1

M

1

M − 1

∑
m=1

(θ̂m − θ̄m) (10)

with Ŵm the within-imputation variance.

3 The impact of quality on the efficiency of coop-

eratives

3.1 Presentation of the problem and the sample design

The main problem of using administrative sources for research (Desrosieres, 2000) is that

sampling process, questions, collection of data... are designed for the specific needs of the

official statistician but not for the needs of the researcher. I describe the design of agricultural

cooperatives survey in which different problems appear. There are three different kinds of

cooperatives: standard agricultural cooperatives, 2nd order cooperatives (cooperatives of

cooperatives) and multistakeholder cooperatives10. Due to the particularity of second-order

cooperatives and multistakeholder cooperatives, we retain only the small standard agricultural

cooperatives in the sample. This exhaustive database of small cooperatives, with less than

10 employees, had been only studied by Magrini et al. (2011). Our contribution is original,

because the authors didn’t correct for the endogeneity between quality and efficiency.

The treatments are the two variables related to the quality policy (QUALITY , BRAND).

Based on a literature review concerning cooperative efficiency, it is reasonable that the follow-

ing variables can vary under different treatment states. Two are related to the outcome : the

10this is the SICA: société d’intérêt collectif agricole - Society of Agricultural Collective Interest.
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gross sales of the cooperativeGS and the gross sales made abroad (EXPORT ). We use the ex-

port intensity (SHARE−EXPORT ). Three are related to the inputs : the labor (RCH13),

the investment (INV 11) and the number of members (MEMBERS). The control variables

are supposed to not vary under the treatment states : the control variables: the relation to

the other enterprises (SUBSIDIARY , PARTICIPATION), the industries (variables be-

ginning with ape), and the previous certifications (NATCERTIF , INTERCERTIF ) (see

appendix 1).

3.2 Results

Honaker et al. (2011, p.25) states that ”the violation of the logical bounds represents part of

the true uncertainty of imputation”. Gelman et al. (2014) highlight the danger of not using

strong external information especially when the data is sparse 11. In our case, because we

have a high amount of missingness, every prior information is useful. Therefore I choose to

set the lower boundary at 0 because all the variables are non-negative by nature. Amelia

implements these bounds by rejection sampling 12. I choose a reasonable value for the ridge

prior with r = 0.05. The other estimation based on various priors are available in appendix

1.

In order to graphically inspect the plausibility of MAR assumption, I use the overim-

putation procedure developed by Honaker et al. (2011). Overimputing involves sequentially

treating each of the observed values as if they had actually been missing. For each observed

value a large number of imputations allows us to construct a confidence interval of what the

imputed value would have been, had any of the observed data been missing. We can then

graphically inspect whether the observed data tend to fall within the region where it would

have been imputed had it been missing (see appendix 1).

On the second step, the model estimated for GS is

QGS(τ |X) = β1.MEMBERS+β2.MEMBERS2+β3.RCH13+β4.RCH132+β5.INV 11+β6.INV 112

+ β7.QUALITY + β8.BRAND + β9.QUALITY.BRAND + α+
∑
j

γj .CONTROLj (11)

with j control variables.

As it is standard in quantile regression, I choose τ = {0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 090, 0.95, 0.99}.
Only results from clustered quantile regression are reported here, as there is only a slight dif-

ference with other estimations 13. The coefficients and the margins estimated are reported in

the appendix 2. The impact of a marginal member increases with the quantile: from 1, 098

euros at the 10th quantile to 4, 481 euros at the median, 9, 511 at the 90th quantile and even

22, 879 euros at the 99th quantile.

11see also http://andrewgelman.com/2013/11/21/hidden-dangers-noninformative-priors/
12When drawing from their posterior, resampling is done repeatedly until a draw that satisfies all the

logical constraints is found. In our case, if after all the resampling, the imputations are still negatives,
Amelia would simply impute 0. SeeHonaker et al. (2011, p. 23).

13all results are available upon request.
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Quality has a net effect on gross sales from the 5th quantile to the 50th quantile. The

net effect is 255, 000 euros at the 50th quantile. This effect is to be compared with the

result observed without balancing the sample, which is only 188, 000 euros (see table 4). Not

accounting for endogeneity of the ”treatment” lead to an underestimation of the impact of

quality on gross sales. Furthermore it leads to avoid a counter-intuitive negative impact at

the 99th sample. The effect of brand policy is not significant for any quantile for the corrected

sample.

Table 4: Effects of Quality and Brand on the Gross Sales

effect of Quality = 1 effect of Brand = 1

Q(0.01)
corrected sample 5.6451 (5.9987) 4.9581 (9.8595)

uncorrected sample 110.8465*** (39.5305) 4.9575 (45.7099)
Q(0.05)

corrected sample 62.6032** (24.7788) 34.0446 (35.5738)
uncorrected sample 142.2878*** (30.7940) -25.2286 (35.6076)

Q(0.10)
corrected sample 139.1950*** (39.8334) 55.3562 (55.8294)

uncorrected sample 103.1928** (43.1928) 33.5798 (49.9446)
Q(0.25)

corrected sample 233.3617*** (57.3309) 79.7918 (79.5024)
uncorrected sample 88.1465 (62.6370) 35.1626 (72.4383)

Q(0.50)
corrected sample 255.4063*** (91.2456) -62.3444 (122.0424)

uncorrected sample 188.6687** (90.2264) -92.5838 (104.2204)
Q(0.75)

corrected sample 199.6906 (149.2327) -299.9367 (203.6520)
uncorrected sample 348.315 (247.3799) -280.6546 (286.0500)

Q(0.90)
corrected sample 108.0132 (236.8795) -559.2106 (346.3007)

uncorrected sample 218.0097 (498.0654) -518.0847 (575.9923)
Q(0.95)

corrected sample 156.1768 (374.7895) -645.6450 (544.5567)
uncorrected sample -22.4547 (710.6499) -483.8087 (821.7377)

Q(0.99)
corrected sample 1,016.2588 (1,050.6128) 892.6492 (1,671.2809)

uncorrected sample -525.1768** (253.9465) -981.0368*** (292.6639)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

As usual, investment and labor have a positive impact on gross sales. As one can see in

the table 5, the efficiency of the cooperatives increases with a quality label and a brand.

The same variables are used for the beta regression with SHARE − EXPORT as a

dependent variable (see appendix 3). Conditionally on exporting, brand has a marginal effect

of 0.0149 (see table 6). For cooperatives that already export, having a brand policy increase

12



Table 5: Efficiency by level of treatment

TE E

Quality = 0 and Brand = 0 0.2925*** 0.9307***
(0.0133) (0.0721)

Quality = 1 and Brand = 0 0.3279*** 0.5652***
(0.0113) (0.0566)

Quality = 0 and Brand = 1 0.3382*** 0.6668***
(0.0149) (0.0742)

Quality = 1 and Brand = 1 0.3745*** 0.4513***
(0.0135) (0.0643)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

the export intensity by 1.5%. The impact of quality is not statistically different from 0.

But what is interesting is that the net effect of brand policy is greater for quality labeled

cooperatives: in effect cooperative with a brand and a quality label have ceteribus paribus an

3.45% increase in their export intensity in comparison with a cooperative with no brand and

no quality label.

Table 6: impact of quality and brand on exporting proportion

SHARE-EXPORT

Quality = 0 0.0751***
(0.0054)

Quality = 1 0.0785***
(0.0055)

Brand = 0 0.0746***
(0.0053)

Brand = 1 0.0895***
(0.0068)

Quality = 0 and Brand = 0 0.0744***
(0.0055)

Quality = 0 and Brand = 1 0.0807***
(0.0075)

Quality = 1 and Brand = 0 0.0750***
(0.0056)

Quality = 1 and Brand = 1 0.1089***
(0.0086)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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4 Conclusion

Potential outcomes seem to be a successful approach to causal inference. The novel two-step

method proposed in this paper is a simple and flexible approach to a productivity analysis.

The EMB algorithm developed by Honaker and King (2010) allows for informative Bayesian

priors placed on missing individual cell values. The overimputation procedure is precious to

inspect the hypothesis of MAR. I apply this method to a French agricultural cooperatives

sample. Quality has a positive and significant effect on gross sales but only for the small to

median cooperatives. It also has a significant effect on exportation but only in conjounction

with a brand policy.

Various robustness checks can be made in order to improve our reflexive approach: using

Bayesian conditional imputation instead of multivariate normal imputation, using single non-

parametric imputation using various informative priors, and using other parametric analysis

in the second step. For the pooled model, we can use the Bayesian algorithm with adaptive

lasso variable selection in order to estimate a parsimonious model (Alhamzawi et al., 2012).

Uninformative or informative priors can be placed on the various parameters. For example,

in the frontier analysis framework, one can expect that the parameter estimated for labor will

be strictly positive.
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Table 7: Quantile(0.01)

VARIABLES coef. dy/dx
11.ape3 -2.0143 -2.0143

(31.4139) (31.4139)
12.ape3 -34.3351 -34.3351

(37.0484) (37.0484)
13.ape3 3.3013 3.3013

(24.7601) (24.7601)
14.ape3 0.2823 0.2823

(24.2744) (24.2744)
15.ape3 -3.4977 -3.4977

(48.8083) (48.8083)
16.ape3 12.6631 12.6631

(25.7353) (25.7353)
17.ape3 6.1523 6.1523

(24.6090) (24.6090)
18.ape3 -1.5305 -1.5305

(29.5114) (29.5114)
ADHA 0.0365 0.0517

(0.0424) (0.0387)
c.ADHA#c.ADHA 0.0001**

(0.0000)
filiale -1.0632 -1.0632

(10.6161) (10.6161)
participation 10.3679 10.3679

(17.3232) (17.3232)
1.qualite 4.4243 5.6451

(6.3926) (5.9987)
1.marqueoui 1.2344 4.9581

(12.2524) (9.8595)
1.qualite#1.marqueoui 11.9066

(18.9291)
certinational 4.7617 4.7617

(7.2086) (7.2086)
certifinter -1.5069 -1.5069

(8.3396) (8.3396)
affiliation 0.6670 0.6670

(5.9905) (5.9905)
INV11 -0.1152* -0.0278

(0.0637) (0.0571)
c.INV11 #c.INV11 0.0008***

(0.0002)
RCH13 0.0140 0.0439

(0.0686) (0.0360)
c.RCH13 #c.RCH13 0.0001

(0.0003)
Constant -5.9818

(24.3604)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 8: Quantile(0.05)

VARIABLES coef. dy/dx
11.ape3 -20.5669 -20.5669

(113.0448) (113.0448)
12.ape3 -242.3959* -242.3959*

(124.4309) (124.4309)
13.ape3 11.7285 11.7285

(92.2732) (92.2732)
14.ape3 -29.9048 -29.9048

(90.4970) (90.4970)
15.ape3 -45.3807 -45.3807

(168.2631) (168.2631)
16.ape3 54.1429 54.1429

(94.0250) (94.0250)
17.ape3 16.2667 16.2667

(90.4756) (90.4756)
18.ape3 -42.0895 -42.0895

(104.0323) (104.0323)
ADHA 0.5476*** 0.5318***

(0.1779) (0.1649)
c.ADHA#c.ADHA -0.0001

(0.0001)
filiale -18.1783 -18.1783

(39.0735) (39.0735)
participation 54.6222 54.6222

(54.5856) (54.5856)
1.qualite 52.4271** 62.6032**

(26.4979) (24.7788)
1.marqueoui 3.0054 34.0446

(45.4346) (35.5738)
1.qualite#1.marqueoui 99.2469

(69.3167)
certinational 24.6483 24.6483

(27.8654) (27.8654)
certifinter -6.2750 -6.2750

(33.0245) (33.0245)
affiliation 20.2036 20.2036

(22.7327) (22.7327)
INV11 0.3277 0.3853*

(0.2433) (0.2282)
c.INV11 #c.INV11 0.0005***

(0.0002)
RCH13 0.2994 0.4205***

(0.2403) (0.1584)
c.RCH13 #c.RCH13 0.0005

(0.0007)
Constant -35.5568

(89.6439)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 9: Quantile(0.10)

VARIABLES coef. dy/dx
11.ape3 -30.6604 -30.6604

(170.4270) (170.4270)
12.ape3 -475.8254** -475.8254**

(193.2421) (193.2421)
13.ape3 45.7634 45.7634

(138.7500) (138.7500)
14.ape3 -52.2312 -52.2312

(136.3826) (136.3826)
15.ape3 -107.8801 -107.8801

(258.1062) (258.1062)
16.ape3 150.7539 150.7539

(143.8554) (143.8554)
17.ape3 53.7422 53.7422

(136.4330) (136.4330)
18.ape3 -74.5904 -74.5904

(156.5037) (156.5037)
ADHA 1.1505*** 1.0982***

(0.3065) (0.2869)
c.ADHA#c.ADHA -0.0003**

(0.0001)
filiale -43.5338 -43.5338

(62.0725) (62.0725)
participation 89.5067 89.5067

(81.2538) (81.2538)
1.qualite 121.7136*** 139.1950***

(42.5658) (39.8334)
1.marqueoui 2.0344 55.3562

(71.1238) (55.8294)
1.qualite#1.marqueoui 170.4946

(104.2638)
certinational 43.7500 43.7500

(44.8154) (44.8154)
certifinter -15.5168 -15.5168

(53.6534) (53.6534)
affiliation 47.3736 47.3736

(36.4516) (36.4516)
INV11 0.9074** 0.9235***

(0.3554) (0.3310)
c.INV11 #c.INV11 0.0001

(0.0003)
RCH13 0.9361** 0.9891***

(0.3635) (0.2556)
c.RCH13 #c.RCH13 0.0002

(0.0008)
Constant -72.2775

(134.3483)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 10: Quantile(0.25)

VARIABLES coef. dy/dx
11.ape3 -105.8047 -105.8047

(250.8017) (250.8017)
12.ape3 -991.8529*** -991.8529***

(277.1888) (277.1888)
13.ape3 119.7240 119.7240

(220.3790) (220.3790)
14.ape3 -127.3774 -127.3774

(210.8553) (210.8553)
15.ape3 -300.1694 -300.1694

(358.2758) (358.2758)
16.ape3 383.0768 383.0768

(238.0316) (238.0316)
17.ape3 174.7480 174.7480

(215.0924) (215.0924)
18.ape3 -237.2784 -237.2784

(234.3162) (234.3162)
ADHA 2.7931*** 2.6449***

(0.5008) (0.4728)
c.ADHA#c.ADHA -0.0007***

(0.0002)
filiale -60.3653 -60.3653

(97.8742) (97.8742)
participation 163.9929 163.9929

(114.7464) (114.7464)
1.qualite 216.9355*** 233.3617***

(60.3694) (57.3309)
1.marqueoui 29.6888 79.7918

(101.1304) (79.5024)
1.qualite#1.marqueoui 160.2029

(141.9453)
certinational 103.5970 103.5970

(70.2828) (70.2828)
certifinter -6.6246 -6.6246

(80.6136) (80.6136)
affiliation 136.1776*** 136.1776***

(51.6951) (51.6951)
INV11 1.6259*** 1.6144***

(0.4974) (0.4572)
c.INV11 #c.INV11 -0.0001

(0.0004)
RCH13 2.2699*** 2.0930***

(0.5517) (0.4018)
c.RCH13 #c.RCH13 -0.0008

(0.0011)
Constant -15.9423

(208.7686)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 11: Quantile(0.50)

VARIABLES coef. dy/dx
11.ape3 -361.7660 -361.7660

(401.9578) (401.9578)
12.ape3 -1,574.0226*** -1,574.0226***

(434.0917) (434.0917)
13.ape3 96.0130 96.0130

(360.4771) (360.4771)
14.ape3 -297.5288 -297.5288

(348.8342) (348.8342)
15.ape3 -557.8527 -557.8527

(576.1407) (576.1407)
16.ape3 747.6819* 747.6819*

(410.7790) (410.7790)
17.ape3 406.6818 406.6818

(361.9591) (361.9591)
18.ape3 -562.4764 -562.4764

(375.5747) (375.5747)
ADHA 4.7139*** 4.4813***

(0.7563) (0.7160)
c.ADHA#c.ADHA -0.0012***

(0.0003)
filiale -80.3329 -80.3329

(137.8129) (137.8129)
participation 285.5171* 285.5171*

(166.2360) (166.2360)
1.qualite 274.2600*** 255.4063***

(95.7943) (91.2456)
1.marqueoui -4.8370 -62.3444

(156.5606) (122.0424)
1.qualite#1.marqueoui -183.8781

(210.7621)
certinational 200.3740* 200.3740*

(107.8244) (107.8244)
certifinter -39.4779 -39.4779

(129.4545) (129.4545)
affiliation 218.4560*** 218.4560***

(81.6624) (81.6624)
INV11 2.7453*** 2.6522***

(0.8632) (0.7972)
c.INV11 #c.INV11 -0.0008

(0.0006)
RCH13 3.7988*** 3.3798***

(0.8040) (0.5871)
c.RCH13 #c.RCH13 -0.0018

(0.0014)
Constant 373.1871

(346.7267)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 12: Quantile(0.75)

VARIABLES coef. dy/dx
11.ape3 -801.3212 -801.3212

(642.4603) (642.4603)
12.ape3 -2,291.6444*** -2,291.6444***

(637.3920) (637.3920)
13.ape3 -11.3603 -11.3603

(550.9807) (550.9807)
14.ape3 -518.6481 -518.6481

(540.5959) (540.5959)
15.ape3 -1,115.9975 -1,115.9975

(911.6407) (911.6407)
16.ape3 1,321.1933** 1,321.1933**

(635.8230) (635.8230)
17.ape3 780.8898 780.8898

(549.4097) (549.4097)
18.ape3 -1,129.4532* -1,129.4532*

(594.4040) (594.4040)
ADHA 7.0604*** 6.7306***

(1.1916) (1.1302)
c.ADHA#c.ADHA -0.0017***

(0.0004)
filiale -132.7892 -132.7892

(214.8936) (214.8936)
participation 345.8495 345.8495

(280.3523) (280.3523)
1.qualite 260.7706* 199.6906

(155.7395) (149.2327)
1.marqueoui -113.6311 -299.9367

(261.9896) (203.6520)
1.qualite#1.marqueoui -595.7063*

(346.0529)
certinational 256.9491 256.9491

(173.4108) (173.4108)
certifinter -30.7214 -30.7214

(216.5507) (216.5507)
affiliation 282.5122** 282.5122**

(129.7145) (129.7145)
INV11 2.9718*** 3.1261***

(1.1113) (1.0710)
c.INV11 #c.INV11 0.0014***

(0.0005)
RCH13 4.3880*** 4.1218***

(1.1995) (0.9484)
c.RCH13 #c.RCH13 -0.0011

(0.0016)
Constant 1,291.5100**

(525.5694)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 13: Quantile(0.90)

VARIABLES coef. dy/dx
11.ape3 -1,136.2543 -1,136.2543

(1,145.5290) (1,145.5290)
12.ape3 -3,254.1153*** -3,254.1153***

(1,134.0651) (1,134.0651)
13.ape3 -143.2386 -143.2386

(1,006.7866) (1,006.7866)
14.ape3 -830.7298 -830.7298

(991.0058) (991.0058)
15.ape3 -1,623.9764 -1,623.9764

(1,670.3246) (1,670.3246)
16.ape3 1,973.9536* 1,973.9536*

(1,083.3856) (1,083.3856)
17.ape3 1,198.5159 1,198.5159

(1,003.0217) (1,003.0217)
18.ape3 -1,524.9937 -1,524.9937

(1,083.3395) (1,083.3395)
ADHA 9.9666*** 9.5114***

(2.0201) (1.9037)
c.ADHA#c.ADHA -0.0023***

(0.0007)
filiale -365.1874 -365.1874

(339.1010) (339.1010)
participation 477.2196 477.2196

(462.4288) (462.4288)
1.qualite 225.7312 108.0132

(249.5024) (236.8795)
1.marqueoui -200.1483 -559.2106

(439.4765) (346.3007)
1.qualite#1.marqueoui -1,148.0905*

(601.1708)
certinational 317.9016 317.9016

(271.2892) (271.2892)
certifinter -124.4133 -124.4133

(341.0100) (341.0100)
affiliation 389.0855* 389.0855*

(220.1842) (220.1842)
INV11 3.7703** 3.8641**

(1.7253) (1.6552)
c.INV11 #c.INV11 0.0009

(0.0009)
RCH13 4.9274** 4.6588***

(1.9665) (1.4662)
c.RCH13 #c.RCH13 -0.0011

(0.0030)
Constant 2,532.3928***

(969.6269)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 14: Quantile(0.95)

VARIABLES coef. dy/dx
11.ape3 -1,378.8775 -1,378.8775

(1,772.5719) (1,772.5719)
12.ape3 -4,052.0292** -4,052.0292**

(1,749.1682) (1,749.1682)
13.ape3 -228.7885 -228.7885

(1,500.6260) (1,500.6260)
14.ape3 -1,132.4230 -1,132.4230

(1,466.9791) (1,466.9791)
15.ape3 -2,203.3841 -2,203.3841

(2,633.9803) (2,633.9803)
16.ape3 2,742.3202* 2,742.3202*

(1,615.8428) (1,615.8428)
17.ape3 1,626.6835 1,626.6835

(1,513.9307) (1,513.9307)
18.ape3 -1,808.8445 -1,808.8445

(1,644.3651) (1,644.3651)
ADHA 13.6883*** 13.0022***

(2.8368) (2.6650)
c.ADHA#c.ADHA -0.0035***

(0.0010)
filiale -553.3856 -553.3856

(581.4166) (581.4166)
participation 541.6300 541.6300

(720.8459) (720.8459)
1.qualite 271.4119 156.1768

(395.4469) (374.7895)
1.marqueoui -294.1558 -645.6450

(688.2055) (544.5567)
1.qualite#1.marqueoui -1,123.8756

(993.2536)
certinational 222.1629 222.1629

(432.7460) (432.7460)
certifinter -162.4805 -162.4805

(517.8156) (517.8156)
affiliation 405.5697 405.5697

(348.0632) (348.0632)
INV11 4.0265 4.1011

(2.7500) (2.6348)
c.INV11 #c.INV11 0.0007

(0.0017)
RCH13 4.7461 4.7147**

(2.9733) (2.1149)
c.RCH13 #c.RCH13 -0.0001

(0.0051)
Constant 3,482.6255**

(1,469.9157)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 15: Quantile(0.99)

VARIABLES coef. dy/dx
11.ape3 -932.6402 -932.6402

(5,287.6199) (5,287.6199)
12.ape3 -5,139.0685 -5,139.0685

(5,062.1133) (5,062.1133)
13.ape3 207.5839 207.5839

(4,267.3976) (4,267.3976)
14.ape3 -1,066.1879 -1,066.1879

(4,136.1191) (4,136.1191)
15.ape3 -2,897.0680 -2,897.0680

(7,376.7458) (7,376.7458)
16.ape3 10,205.2172** 10,205.2172**

(4,871.5048) (4,871.5048)
17.ape3 3,573.8931 3,573.8931

(4,178.0085) (4,178.0085)
18.ape3 -1,843.3505 -1,843.3505

(4,647.3402) (4,647.3402)
ADHA 24.2102*** 22.8798***

(6.2620) (5.8448)
c.ADHA#c.ADHA -0.0067***

(0.0025)
filiale -1,497.3409 -1,497.3409

(1,595.1984) (1,595.1984)
participation 1,194.5513 1,194.5513

(1,939.0487) (1,939.0487)
1.qualite 517.2975 1,016.2588

(1,083.2949) (1,050.6128)
1.marqueoui -629.2789 892.6492

(1,904.3725) (1,671.2809)
1.qualite#1.marqueoui 4,866.3167

(3,670.0709)
certinational 116.7999 116.7999

(1,202.9851) (1,202.9851)
certifinter -128.6415 -128.6415

(1,485.7026) (1,485.7026)
affiliation 285.5788 285.5788

(1,004.6479) (1,004.6479)
INV11 1.7462 1.9650

(6.8239) (6.4248)
c.INV11 #c.INV11 0.0020

(0.0050)
RCH13 3.9909 5.3029

(8.6167) (5.7175)
c.RCH13 #c.RCH13 0.0057

(0.0171)
Constant 5,088.4126

(4,097.1099)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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5.3 Appendix 3: Results of the zero-one-inflated beta regres-

sion
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Table 16: Results of the zero-one-inflated beta regression

(1) (2) (3) (4)

VARIABLES proportion oneinflate zeroinflate ln phi
11.ape3 -0.0910 0.0298 -0.0359

(0.2699) (1.9620) (0.2898)
12.ape3 0.2075 1.5744 -0.4860

(0.2625) (1.9059) (0.3444)
13.ape3 -0.2394 -0.3537 -0.0864

(0.2229) (1.8275) (0.2508)
14.ape3 -0.0969 0.0783 -0.3259

(0.2230) (1.7920) (0.2527)
15.ape3 0.0324 -2.9000 0.5050

(0.3919) (6.7322) (0.3415)
16.ape3 -0.0991 -0.6917 0.0359

(0.2284) (1.8800) (0.2611)
17.ape3 -0.1105 -0.3241 -0.3174

(0.2244) (1.8214) (0.2527)
18.ape3 -0.0187 0.4135 0.4654*

(0.2445) (1.8628) (0.2689)
ADHA -0.0007*** -0.0052** 0.0005

(0.0002) (0.0023) (0.0004)
c.ADHA#c.ADHA 0.0000** 0.0000 -0.0000

(0.0000) (0.0000) (0.0000)
filiale 0.0245 0.1136 0.0164

(0.0699) (0.4524) (0.1117)
participation -0.0547 -0.4749 -0.1802

(0.0824) (0.6856) (0.1308)
1.qualite 0.0088 -0.4884* 1.6155***

(0.0442) (0.2936) (0.0633)
1.marqueoui 0.0869 -0.0525 0.6188***

(0.0790) (0.4772) (0.1566)
1.qualite#1.marqueoui 0.3247*** -14.0623*** 0.4549*

(0.1035) (1.7195) (0.2370)
certinational 0.0911 -0.1122 -0.3511***

(0.0573) (0.2942) (0.0755)
certifinter -0.0154 0.0429 0.0404

(0.0659) (0.3556) (0.0835)
affiliation -0.0242 -0.1840 -0.0044

(0.0419) (0.2500) (0.0601)
INV11 -0.0005 -0.0014 -0.0071***

(0.0004) (0.0034) (0.0014)
c.INV11 #c.INV11 0.0000*** -0.0000 0.0000***

(0.0000) (0.0000) (0.0000)
RCH13 -0.0004 -0.0033 -0.0046***

(0.0003) (0.0025) (0.0009)
c.RCH13 #c.RCH13 0.0000 0.0000 0.0000**

(0.0000) (0.0000) (0.0000)
Constant -2.3282*** -2.0078 -1.2065*** 1.4936***

(0.2383) (1.7978) (0.2511) (0.0853)

Clustered standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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