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Abstract

The Markov chain model (MCM) has become a popular tool in the agricultural economics
literature to study the impact of various drivers on the structural change of farms, including
public support. In order to relax the process-homogeneity assumption underlying the MCM,
we consider a mixture of two types of agents, the ‘stayers’ who always remain in their initial
size category, and the ‘movers’ who follow a first-order Markovian process. An empirical
application to a panel of commercial French farms over 2000-2012 shows that the mover-stayer
model (MSM) is a better modeling framework to recover the underlying transition probability
matrix.
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1. Introduction

As Zimmermann et al. (2009) show, it has become quite common in the agricultural economic
literature to study the way farms experience structural change thanks to the so-called Markov
chain model (MCM). Basically, this model states that, as the size of farms changes according
to some stochastic process, farms move from one size category to another over time. This
modeling framework has been particularly used in its non-stationary version, where transition
probabilities across categories may vary with time, in order to study the impact of a variety of
factors, including agricultural policies.

Most of these studies have used ‘aggregate’ data, that is, cross-sectional observations of
the distribution of a farm population into a finite number of size categories: such data are most
often easier to obtain than individual-level data, and Lee et al. (1965) and Lee et al. (1977) have
shown that robustly estimating a MCM from aggregate data is possible. Since then, because es-
timating a MCM may well be an ill-posed problem as the number of parameters to be estimated
is often larger than the number of observations (Karantininis, 2002), much effort has been ded-
icated to developing efficient ways to parameterize and estimate such models, ranging from a
discrete multinomial logit formulation (MacRae, 1977; Zepeda, 1995), the maximization of a
generalized cross-entropy model with instrumental variables (Karantininis, 2002; Huettel and
Jongeneel, 2011; Zimmermann and Heckelei, 2012), a continuous re-parameterization (Piet,
2011), to the use of Bayesian inference (Storm et al., 2011).

However, even though some of these studies have accounted for heterogeneity across farms
by considering transition probabilities covariates depicting farmer and/or farm characteristics
(see Zimmermann and Heckelei (2012) for a recent example), to our knowledge, none of these
studies has questioned so far the assumption of process-homogeneity which underlies the tradi-
tional Markov modeling framework: all of these studies define only one transition probability
matrix for the whole population under study, implying that all agents follow the same and unique
stochastic process. As farm-level data become more widely available, allowing for the obser-
vation of individual transitions across time, we argue that this homogeneity assumption should
be relaxed. To this end, we propose to use a more general modeling framework than the MCM,
namely the mixed MCM (M-MCM). As an illustration, we apply the simplest version of this
extended model, the mover-stayer model (MSM), to compute the short- and long-run transition
probability matrices for an unbalanced panel of 14,298 commercial French farms observed over
2000-2012.

The paper is structured as follows. Section 2 introduces how the traditional MCM can
be generalized into the M-MCM. Section 3 develops the specific MSM specification along
with the method used to estimate the model. Section 4 reports our application to France, first
describing the data used and then presenting the results. Finally, section 5 concludes with some
considerations on how to extend further the approach described here.

2. Generalizing the Markov chain model

2.1. Transition probability matrices

Consider a population of agents which is partitioned into a finite number J of categories or
‘states of nature’. Assuming that agents move from one state to another during a certain period
of time according to a stochastic process leads to defining the number nj,t+r of individuals in
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category j at time t+ r as given by:

nj,t+r =
J∑

i=1

φ
(r)
ij,tni,t, (1)

where ni,t is the number of individuals in category i at time t, and φ(r)
ij,t is the probability of

moving from state i to state j between t and t + r. As such, φ(r)
ij,t is subject to the standard

non-negativity and summing-up to unity constraints for probabilities:

φ
(r)
ij,t ≥ 0, ∀i, j, t∑J

i=1 φ
(r)
ij,t = 1, ∀j, t

(2)

In the following, we restrict our analysis to the stationary case where the r-step transition prob-
ability matrix (TPM), P(r)

t = {φ(r)
ij,t}, is independent from t, i.e., P(r)

t = P(r) for all t. In matrix
notation, equation (1) then rewrites:

Nt+r = Nt × P(r), (3)

where Nt+r = {nj,t+r} and Nt = {nj,t} are row vectors.

2.2. Markov versus mixed-Markov models

The traditional MCM approach consists in approximating P(r) by the 1-step transition matrix
P(1) ≡ Π = {πij} raised to the power r. The econometric model which has to be estimated
thus writes:

Nt+r = Nt ×Πr + Vt+r, (4)

where Vt+r = {vj,t+r} is a row vector of error terms assumed independently and identically
distributed (iid).

In doing so, the MCM approach assumes that the individuals in the population are homo-
geneous, i.e., they all move according to the same stochastic process described by Π. However,
in general, Πr proves to be a poor estimate of P(r) (Blumen et al., 1955; Spilerman, 1972). In
particular, the diagonal elements of Πr largely underestimate those of P(r). With the notation
that Π(r) = Πr, this means that, in general, π(r)

ii � φ
(r)
ii . One way to obtain a 1-step TPM

which leads to a more consistent r-step estimate, consists in relaxing the process-homogeneity
assumption underlying the MCM approach. This leads to considering a mixture of time ho-
mogeneous Markov chains which captures population heterogeneity in the rate of movement
among state (Frydman, 2005).

Considering that agents may follow a discrete number G of elementary Markov processes
instead of just one, the general form of the mixed Markov chain model (M-MCM) consists in
decomposing P(1) ≡ P = {pij} as:

P =
G∑

g=1

SgMg, (5)

where Mg = {mij,g} is the TPM defining the 1-step Markov process followed by type-g agents,
and Sg = diag(si,g) is a diagonal matrix which gathers the shares of type-g agents in each state
of nature. Since every agent in the population has to belong to one and only one type g, the
constraint that

∑G
g=1 Sg = IJ must hold, where IJ is the J × J identity matrix.
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Under this model, equation (4) rewrites:

Nt+r = Nt ×P(r) + Ut+r = Nt ×
G∑

g=1

SgM
r
g + Ut+r, (6)

where Ut+r = {uj,t+r} is a row vector of iid error terms.
With the so-defined MCM and M-MCM modeling frameworks, it should be noted that

P(1) = Π = P but Π(r) 6= P(r) in general, and that the M-MCM reduces to the MCM if G = 1.

2.3. Continuous time models

According to the structural change under study, the transition process characterizing each ho-
mogeneous type of agents can be regarded as discrete or continuous with respect to time. While
several authors have used a discrete-time approach (Blumen et al., 1955; Spilerman, 1972; Fry-
dman et al., 1985), a continuous-time approach is preferable if transitions may occur at any time
(Lando and Skodeberg, 2002; Frydman and Kadam, 2004; Frydman and Schuermann, 2008).
In this case, following Singer and Spilerman (1975), the type-g TPM is given at any time t by:

Mg(t) = exp(tQg), (7)

where Qg = {qij,g} represents the generator matrix of the Markovian process followed by
type-g agents, defined as:

• exp(tQg) =
∑∞

k=0

tkQk
g

k!
,

• qij,g ≥ 0 for i 6= j ∀g,

• and, by convention, qii,g ≡ −
∑

j 6=i qij,g = −qi,g ≤ 0 ∀g.

With the generator matrix Qg so defined, it is worth noting that qij/qi is the probability that
an agent in state i moves to state j, given the occurrence of a transition, and that 1/qi is the
expected total time an agent spends in state i.

In the agricultural economics literature, farm structural change has been so far studied
mostly using the discrete-time approach. So doing, an arbitrary time interval, generally one
year, is chosen to estimate the unitary, i.e., annual (or 1-year) transition probability matrix
which governs the process. However, even if farm sizes are observed only once a year in the
best case, farms may change their size at any time during the year. Furthermore, as pointed
out by Singer and Spilerman (1976), using different unitary time intervals may lead to different
results. Thus, the continuous-time approach has been preferred here.

2.4. Frydman (2005)’s specification of the M-MCM

As the number of parameters to estimate increases with the number of homogeneous agent
types, the estimation of equation (6) may become difficult because of an identification issue.
Thus, Frydman (2005) proposed a parameterization of the M-MCM under a continuous-time
approach, assuming that all type-g TPMs are related to a specific one:

Qg ≡ ΛgQ ∀g, (8)

where Λg = diag(λi,g) with λi,g ≥ 0.
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The λi,g parameters inform about differences in the rates of movement across homogeneous
agent types: λi,g = 0 if type-g agents starting in state i never move out of i; 0 < λi,g ≤ 1 if they
move at a lower rate than the generator matrix Q and; λi,g > 1 if they move at a higher rate than
the generator matrix Q. The generator matrix Q is chosen arbitrarily as the intensity matrix for
the last homogeneous agent type (Q ≡ QG), i.e., ΛG = IJ .

3. The model used

3.1. The Mover-Stayer model

In this paper, we stick to the simplest version of the M-MCM, namely the mover-stayer model
(MSM) first proposed by Blumen et al. (1955). In this restricted approach, only two types
of homogeneous agents are considered, those who always remain in the same category (the
‘stayers’) and those who follow a first-order Markovian process (the ‘movers’). Formally, this
leads to rewriting equation (5) in a simpler form as:

P(t) = S + (IJ − S)M(t). (9)

With respect to the general formulation (5), this corresponds to setting G = 2 and defining
S1 ≡ S and M1 = IJ for the stayers, and S2 = (IJ − S) and M2 ≡ M for the movers.
With respect to Frydman (2005)’s specification of equation (8), this is equivalent to imposing
Λ1 = 0J for stayers (where 0J is the J × J matrix with all elements set to zero), and Λ2 = IJ
and Q2 ≡ Q for movers.

3.2. Maximum likelihood estimation under complete information

Since Goodman (1961) has shown that Blumen et al. (1955) estimators for the MSM are biased,
alternative methods have been developed to obtain consistent ones using maximum likelihood
(Frydman, 1984, 2005) or Bayesian inference (Fougère and Kamionka, 2003). Based on the
findings of Frydman (1984) and using the general formulation of equation (5) and the relation
established in (8), Frydman (2005) has developed a maximum likelihood method to estimate the
parameters of the M-MCM. We report this strategy, using our own notations introduced above.

Consider a population of n agents, each k of which being observed continuously on some
time interval [0, Tk] with Tk ≤ T , where T the time horizon of all observations. According
to Frydman and Kadam (2004) and under Frydman (2005)’s specification of the M-MCM as
defined by equation (8), the likelihood that the transition history of agent k was generated by a
specific Markov chain with the generator matrix Qg (i.e., that k belongs to type g), conditional
on knowing that k was initially in state ik, is given by:

lk,g = sik,g
∏
i 6=j

(λi,gqij)
nij,k

∏
i

exp(−λi,gqiτi,k), (10)

where sik,g is the share of type-g agents initially in state ik, nij,k is the number of times k made
a transition from i to j with j 6= i, and τi,k is the total time spent by k in state i (with τi,k ≤ Tk).

Under the MSM framework where only two type of agents are considered (‘S’ standing for
stayers and ‘M ’ for movers), the log-likelihood function for the whole population then writes:

logL =
n∑

k=1

(Yk,Sloglk,S + Yk,M loglk,M), (11)
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where Yk,g is an indicator variable which equals 1 if agent k belongs to g and 0 otherwise (with
g = {S,M}).

Under complete information, all Yk,g are perfectly known so equation (11) rewrites:

logL =
∑
i

bilog(1− si)+
∑
i

bi,Slog[si/(1− si)]+
∑
i 6=j

nijlog(qij)−
∑
i

qiτi+
∑
i

qiτi,S, (12)

where si is state-i share of stayers, qij and qi are the elements of the generator matrix Q of
movers as defined in section 2.3, bi is the total number of agents who were initially in state
i, bi,S is the total number of stayers who were initially in state i, nij is the total number of
transitions from state i to state j, τi is the total time spent in state i by all agents and τi,S is the
total time spent in state i by stayers.

Then, maximizing equation (12) with respect to its unknown parameters si and qij leads to
the following estimators:

ŝi =
bi,S
bi
, q̂i =

ni

τi,M
and q̂ij =

nij

ni

q̂i, (13)

where ni is the total number of transitions out of state i and τi,M is the total time spent in state
i by movers (with τi = τi,S + τi,M ).

3.3. The EM algorithm under incomplete information

Swensen (1996) has shown that equation (11) is actually difficult to use directly because it is
unlikely that we know beforehand which agents are stayers and which are movers. This would
require that we observed each agent k during a sufficiently long period Tk to reach complete
information on their status.

Alternatively, Fuchs and Greenhouse (1988) and van de Pol and Langeheine (1989) sug-
gested that the MSM parameters can be estimated using the Expectation-Maximization (EM)
algorithm developed by Dempster et al. (1977). Following Frydman and Kadam (2004), the
EM algorithm in our case consists of the four following steps:

(i) Initialization: Arbitrarily choose initial values s0i for the share of stayers and q0i for the
diagonal entries of the generator matrix Q of movers.

(ii) Expectation: At step p of the algorithm, compute the probability of observing k as gener-
ated by a stayer, Ep(Yk,S). If at least one transition is observed for k then set Ep(Yk,S) = 0,
otherwise set it to:

Ep(Yk,S) =
spi

spi + (1− spi )exp(−q
p
i τi,k)

.

Then compute:

Ep(bi,S) =
n∑

k=1

Ep(Yk,S), Ep(τi,S) =
n∑

k=1

Ep(Yk,S)τk,i and Ep(τi,M) = τi − Ep(τi,S).

(iii) Maximization: Update spi and qpi as follows:

sp+1
i =

Ep(bi,S)

bi
and qp+1

i =
ni

Ep(τi,M)
.
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(iv) Iteration: Return to step (ii) using sp+1
i and qp+1

i and iterate until convergence. When
convergence is reached, ŝ∗i and q̂∗i so obtained are considered as the optimal estimators, and q̂∗ij
derives from q̂∗i as in equation (13).

4. Empirical application

4.1. Data used

When empirically applying the modeling frameworks presented above to the agricultural sector,
‘agents’ are usually farms and ‘states of nature’ are defined with respect to some size variable.

We applied the standard Markov (MCM) and the Mover-Stayer models (MSM) to the
French strand of the EU-wide Farm Accounting Data Network (FADN) database.1 Individ-
ual farm level data were available from 2000 to 2012 for the full sample surveyed, i.e., around
7,000 farms each year. Since the FADN database is a rotating panel, farms which enter (respec-
tively, leave) the sample a given year cannot be considered as representing actual entries into
(exits from) the agricultural sector.2 Therefore, we chose to work on size change of on-going
farms, i.e., without considering entries nor exits. In order to observe at least one transition for
each agent, we kept only farms present during at least two consecutive years in the database.
Our unbalanced panel thus counted 14,298 farms, that is 87.64% of the full sample.

Table 1. Distribution by economic size (ES) class and average ES for the studied sample.a

Years Number of farms by ES class Total Average ES

(0-50) (50-100) (100-150) (150-250) (+250) (std. dev.)

2000 682 1,909 1,383 1,543 1,170 6,687 169.88 (183.56)
2001 730 2,147 1,571 1,757 1,320 7,525 170.51 (181.48)
2002 692 2,056 1,600 1,762 1,366 7,476 175.72 (194.42)
2003 663 1,922 1,503 1,647 1,335 7,070 175.32 (192.47)
2004 689 1,877 1,488 1,652 1,371 7,077 176.66 (187.81)
2005 707 1,869 1,467 1,653 1,388 7,084 177.00 (181.07)
2006 736 1,874 1,444 1,636 1,420 7,110 179.81 (208.74)
2007 747 1,789 1,507 1,646 1,437 7,126 180.73 (188.34)
2008 761 1,819 1,474 1,684 1,528 7,266 184.47 (199.12)
2009 752 1,774 1,493 1,694 1,570 7,283 187.45 (202.93)
2010 637 1,848 1,512 1,733 1,563 7,293 189.78 (198.67)
2011 627 1,828 1,438 1,755 1,612 7,260 194.08 (207.43)
2012 579 1,637 1,274 1,653 1,498 6,641 197.69 (248.16)

a ES in 1000 Euros of standard output

Source: Agreste, FADN France 2000-2012 – authors’ calculations

As we considered all farms in the sample whatever their type of farming, we chose to
concentrate on size as defined from an economic perspective. In accordance with the European

1The French FADN is called ‘Réseau d’Information Comptable Agricole’ (RICA) and is produced and dis-
seminated by the statistical and foresight service of the French ministry for agriculture. To learn more about
RICA, see http://www.agreste.agriculture.gouv.fr/. To learn more about FADN in general, see
http://ec.europa.eu/agriculture/rica/index.cfm.

2In this respect, around 10% of the French FADN sample is renewed each year.
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regulation (CE) Nº1242/2008, FADN farms are classified into 14 economic size (ES) categories,
evaluated in terms of total standard output (SO) expressed in Euros.3 In France, the FADN
focuses on ‘commercial’ farms, that is, farms whose SO is greater than or equal to 25,000 Euros;
this corresponds to ES category 6 and above. We aggregated the 9 size categories available in
the French FADN into 5: ES6 and below (less than 50,000 Euros of SO);4 ES7 (between 50,000
and 100,000 Euros of SO); ES8 divided in two categories (between 100,000 and 150,000 of SO
and between 150,000 and 250,000 of SO); ES9 and above (more than 250,000 Euros of SO).
This led to observe 78,600 individual 1-year transitions from 2000 to 2012. Table 1 presents
the evolution over the whole studied period of farm numbers by ES categories and average ES
in thousand of Euros of SO for the studied panel.

Before proceeding with the results of our analysis, it should be noted that because we
chose to work with a subset of the full sample, the transition probabilities reported in the next
section should be viewed as size change probabilities conditional on having been observed at
least two consecutive years during the whole period under study, and should not be considered
as representative for the whole population of commercial French farms. Furthermore, because
we cannot identify entries into and exits from the sector in the FADN database, the distribution
of farms will be analyzed in terms of shares of farms by size categories and not in terms of
absolute numbers.

4.2. Results

In order to test the usefulness of the MSM and to compare its merits with respect to the MCM,
we divided the database into two periods. First, we used observations from 2000 to 2009 to
estimate the parameters of both models. Then, observations from 2010 to 2012 were used to
compare out-sample predictions.

For the estimation phase, nine subsamples could be constructed according to the minimum
number of consecutive years a farm remains present in the database, from two to ten. It appeared
that the optimal subsample was the one where farms remained at least nine years in the database
(not reported): with this subsample, the estimated 8-years TPM and the predicted distribution
were closest to the observed ones for both model, as measured by the sum of marginal errors
(SME), defined as (Frydman et al., 1985; Cipollini et al., 2012):

SME =
∑√(

Obs− Pred
Obs

)2

.

The corresponding observed 1-year and 9-years TPMs were then computed (Table 2). As
has been usually found in the literature, we observe that these TPMs are strongly diagonal,
meaning that their diagonal elements exhibit by far the largest values and that probabilities
rapidly decrease as we move away from the diagonal. This means that, overall, farms are more
likely to remain in their initial size category.5

In order to estimate the stayers proportions, S, and the generator matrix of movers, Q,
defining the MSM, we implemented the continuous-time specification and the EM algorithm

3SO is being used as the measure of economic size since 2010. Before this date, economic size was measured
in terms of standard gross margin (SGM). However, SO calculations have been retropolated for 2000 to 2012,
allowing for consistent time series analysis (European Commission, 2010).

4Even if the French FADN focuses on commercial holdings, farms with less than 25,000 Euros of SO may be
present at some point in the database because they are kept in the sample from year to year even if they fall below
the threshold once in a while.

5Which does not mean no size change at all but, at least, no sufficient change to move to another category as
we defined them.
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Table 2. Observed TPMs and size distribution in 2009

ES class

(0-50) (50-100) (100-150) (150-250) (+250)

(0-50) 0.920 0.075 0.003 0.002 0.000
(50-100) 0.035 0.894 0.064 0.005 0.002

ES class (100-150) 0.003 0.064 0.851 0.080 0.002
(150-250) 0.002 0.004 0.054 0.882 0.058
(+250) 0.000 0.002 0.005 0.052 0.941

a) 1-year TPM (P(1))

ES class

(0-50) (50-100) (100-150) (150-250) (+250)

(0-50) 0.772 0.158 0.042 0.023 0.005
(50-100) 0.132 0.609 0.206 0.034 0.016

ES class (100-150) 0.022 0.135 0.569 0.248 0.026
(150-250) 0.010 0.032 0.094 0.639 0.226
(+250) 0.009 0.013 0.020 0.123 0.836

D2009 All 0.103 0.244 0.205 0.233 0.216

b) 9-years TPM (P(9)) and size distribution in 2009 (D2009)

Source: Agreste, FADN France 2000-2009 – authors’ calculations

Table 3. Stayer shares and mover generator matrix.

Stayers Movers Q

sii (0-50) (50-100) (100-150) (150-250) (+250)

(0-50) 0.534 -0.140 0.131 0.005 0.003 0.001
(50-100) 0.425 0.058 -0.176 0.106 0.009 0.003
(100-150) 0.169 0.004 0.079 -0.184 0.098 0.003
(150-250) 0.344 0.002 0.006 0.075 -0.163 0.080
(+250) 0.631 0.001 0.005 0.010 0.110 -0.126

Source: Agreste, FADN France 2000-2009 – authors’ calculations

estimation method developed in section 3. Table 3 reports the corresponding shares of stayers
by size category and generator matrix of movers. The estimated stayer shares confirm that,
for 4 categories out of the 5 ones considered, more than one third of farms do not move away
from their initial category; for the intermediate category, i.e., farms whose SO lies between
150,000 and 250,000 Euros, this share is less than 20%. Movers from the latter category remain
about 5 years in this state while movers with less than 50,000 or more than 250,000 leave these
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Table 4. Predicted 9-years TPMs and size distributions in 2009.

ES class

(0-50) (50-100) (100-150) (150-250) (+250)

(0-50) 0.523 0.336 0.094 0.035 0.011
(50-100) 0.160 0.477 0.229 0.103 0.031

ES class (100-150) 0.051 0.232 0.352 0.273 0.093
(150-250) 0.018 0.075 0.188 0.446 0.274
(+250) 0.007 0.030 0.071 0.251 0.641

DMCM
2009 All 0.115 0.241 0.203 0.236 0.204

a) MCM TPM (Π(9)) and size distribution in 2009 (DMCM
2009 )

ES class

(0-50) (50-100) (100-150) (150-250) (+250)

(0-50) 0.708 0.167 0.079 0.035 0.012
(50-100) 0.093 0.639 0.157 0.083 0.029

ES class (100-150) 0.046 0.152 0.525 0.200 0.078
(150-250) 0.018 0.060 0.141 0.620 0.162
(+250) 0.006 0.021 0.050 0.129 0.794

DMSM
2009 All 0.113 0.248 0.203 0.234 0.202

b) MSM TPM (P(9)) and size distribution in 2009 (DMSM
2009 )

Source: Agreste, FADN France 2000-2009 – authors’ calculations

categories after 7 to 8 years on average.6 Such a result also shows that farms remaining in a
particular state during a long time period are not necessarily stayers.

Then, Table 4 reports both the MCM 9-years TPM, Π(9) ≡
(
P(1)
)9, and the MSM 9-years

TPM, P(9), obtained from S, Q and equations (7) and (9), and both corresponding estimated size
distributions in 2009. While both models quite compare in predicting the distribution of sizes,
TPMs are obviously different, especially with respect to their diagonal elements. In particular,
when compared to the actually observed 9-years TPM, P(9) (see Table 2b), we find as expected
that π(9)

ii � φ
(9)
ii while p(9)ii is much closer to φ(9)

ii . Overall, the MSM matrix thus appears as a
better approximation of the observed matrix than the MCM matrix, which is confirmed by the
respective sum of marginal errors (SME) computed with respect to the observed 9-years TPM.

Finally, out-of-sample predictions for 2010-2012 confirm the superiority of the MSM,
which becomes even relatively more accurate with respect to the MCM as the projection horizon
increases (not reported).

6Recall that the time spent by movers in a particular category is given by −1/qii (see section 2.3).
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5. Concluding remarks

The empirical analysis provided in the previous section reveals that relaxing the homogeneity
assumption which grounds the traditional Markov chain model (MCM) leads to a better model-
ing of the underlying economic process. Using a more general framework, the decomposition
of the 1-year transition probability matrix into, on the one hand, a fraction of ‘stayers’ who
remain in their initial size category and, on the other hand, a fraction of ‘movers’ who follow
a standard Markovian process, allows to derive a closer estimate of the observed short- and
long-run transition matrix as well as farm distribution across size categories.

Still, such a mover-stayer model (MSM) is quite a restricted and simplified version of
the more general model which was presented in section 2. Even though we improved Blu-
men et al. (1955)’s calibration process by using the continuous-time approach and the elabo-
rate expectation-maximization estimation method of Frydman (2005), extending Blumen et al.
(1955)’s framework could lead to even more economically sound, as well as statistically more
accurate models for the farming sector. We briefly mention some of such extensions which we
think are promising. Firstly, more heterogeneity across farms could be incorporated by allow-
ing for more than two types of agents, and the quite strong assumption of a ‘pure stayer’ type
could be relaxed. Secondly, with either of these two extensions put in place, Frydman (2005)’s
assumption regarding the structural relation across generator matrices could be also revisited,
especially in such a way that the process of structural change in the farming sector would be
better represented.

Finally, the last direction towards which we would like to extend our modeling frame-
work consists in accounting for entries and exits and developing a non-stationary version of the
model. Indeed, we think that such a generalized version of the MSM approach could certainly
prove very insightful for analyzing structural change in the farming sector, in particular to get a
better understanding of the impact of agricultural policies on the development of farm numbers
and sizes.
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