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Abstract

We present a method to estimate jointly the parameters of a standard commodity storage model and
the parameters characterizing the trend in commodity prices. This procedure allows the influence of a
possible trend to be removed without restricting the model specification, and allows model and trend
selection based on statistical criteria. The trend is modeled deterministically using linear or cubic
spline functions of time. The results show that storage models with trend are always preferred to
models without trend. They yield more plausible estimates of the structural parameters, with storage
costs and demand elasticities that are more consistent with the literature. They imply occasional
stockouts, whereas without trend the estimated models predict no stockouts over the sample period
for most commodities. Moreover, accounting for a trend in the estimation imply price moments closer
to those observed in commodity prices. Our results support the empirical relevance of the speculative
storage model, and show that storage model estimations should not neglect the possibility of long-run
price trends.
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1 Introduction

Gustafson’s (1958) commodity storage model is fundamental for explaining the annual behavior of com-
modity prices. It features forward-looking speculators that maximize profit by stockpiling a commodity
based on the difference between the expected price and the current price. The source of volatility in
the commodity storage model is the occurrence of unexpected supply shocks. The model has proven
capable of reproducing many features of commodity prices such as sharp spikes, volatility clustering,
positive skewness, and excess kurtosis (Deaton and Laroque, 1992). However, in early estimations of
this model, Deaton and Laroque (1992, 1996) show that it could not explain the high degree of serial
correlation observed in the price series. This finding was challenged. Cafiero et al. (2011b) show that
using a finer grid to approximate the policy function and a different model specification, the storage
model is able to generate the observed serial correlation for seven of the twelve commodities analyzed
in Deaton and Laroque (1996). Since Cafiero et al. (2011b), several papers provide positive evidence
for the role of storage arbitrage in price behavior (Bobenrieth et al., 2013; Cafiero et al., 2015; Guerra
et al., forthcoming). However, if the model is estimated on untransformed real price indexes (as in
Cafiero et al., 2011b), discretionary stocks are always strictly positive (i.e., there are no “stockouts”) for
most commodities over the sample interval. This result casts doubt on the appropriateness of using for
estimation a nonlinear model with two regimes (with and without stocks) if, over long samples and for
most commodities, the estimations imply that only one regime is active.

The absence of stockouts may be a consequence of the attempt to fit with the storage model a serial
correlation that is artificially high, due to a possible non-stationarity in the price series. Commodity
prices are unlikely to be stationary over long periods. Starting with the work by Prebisch (1950) and
Singer (1950), a large literature has been devoted to characterizing the nature of this non-stationarity:
whether trends are stochastic or deterministic, the existence of long-run cycles, or secular decline of
commodity prices relative to those of manufactures (e.g., Grilli and Yang, 1988; Ardeni and Wright,
1992; Cuddington, 1992; Cashin and McDermott, 2002). Estimating the storage model, which features
prices converging to a stationary distribution, with untransformed prices (as in Deaton and Laroque, 1992,
1996; Cafiero et al., 2011b) is likely to lead to biased parameter estimates if prices are non-stationary.
The present article assesses the role of potential non-stationary price series in estimations of the storage
model, and proposes an approach that statistically accounts for a trend in the price series.

How to estimate dynamic stochastic rational expectations models that are defined to be stationary
around a steady state using non-stationary data is a very important question in the related literature on the
estimation of DSGE models. In a recent paper, Canova (2014) summarizes the various strategies used in
this literature. Most apply also to the storage model. Most DSGE models are estimated on transformed
data in two steps. First, a statistical filter (linear detrending, Hodrick and Prescott filter, first-order
differencing, or band-pass filter) is applied to the raw data, then the structural model is estimated using
the transformed data. This approach has the attraction of convenience but is known to involve problems.
The business cycle facts will depend on the choice of filter which is arbitrary (Harvey and Jaeger, 1993;
Canova, 1998), due to lack of formal tests to select the most appropriate trend specification. For the
storage model, the two-step approach is applied in Cafiero et al. (2011a), Bobenrieth et al. (2013, 2014),
and Guerra et al. (forthcoming) where prices are detrended ex-ante using a log-linear trend.

Another approach involves the construction of a model that includes transitory and permanent shocks,
the latter aimed at capturing non-cyclical fluctuations. The model is made stationary by scaling it by the
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permanent shocks, and is fitted to the raw data. This approach has the appeal of theoretical consistency
but introduces the risk of misspecification. Because it is not possible to make every model stationary for
all possible specifications of permanent shocks, the model design and the nature of the shocks may be
driven more by computational than economic motives. This approach is applied to the storage model in
Zeng (2012). In Zeng’s model, storers internalize the downward trend in commodity prices, and adjust
their behavior accordingly. However, to obtain a stationary arbitrage equation while including a trend
in prices, storage costs must either be zero or have the same trend as prices. Another issue related to
this approach in the context of the storage model is that the structural trend included in the model may
have to capture non-cyclical fluctuations which might be far from structural. The Boskin Report (Boskin
et al., 1996) has initiated debate over a possible positive bias in the construction of the US CPI which is
used in most works to deflate commodity prices, following Deaton and Laroque (1992). Potential bias
in the deflator has numerous consequences for the literature on commodity prices dynamics. Svedberg
and Tilton (2006) show that by adjusting the US CPI for the bias estimated by the Boskin Commission,
the conclusion of a downward trend in the price of copper can be reversed. A related issue is the choice
of price deflator. Fernandez (2012) shows that the conclusions related to the trend in commodity prices
are not robust to the choice of price deflator. Because of the uncertainties related to the choice of an
appropriate deflator and its potential accuracy, we prefer not to introduce the trend in the structural model,
and pursue a different approach.

Here, we adopt the alternative method to estimate DSGE models using raw data proposed by Canova
(2014).1 In this approach, the econometrician defines a statistical model which is a combination of a
DSGE and a reduced-form model; the reduced-form is aimed at capturing the component in the data
that the structural model is unable to explain. This statistical model can be estimated using raw data,
which leads to joint estimation of the structural and reduced-form parameters. Interestingly, this one-step
approach allows us to select the most likely trend specification based on a statistical criterion for model
selection. In this paper, we apply this approach by jointly estimating a storage model and a reduced-form
trend that describes the non-cyclical component of price. The estimation procedure starts from the
Maximum Likelihood estimator proposed for the storage model by Cafiero et al. (2015), and which
was proved to have better small sample properties than Deaton and Laroque’s (1996) Pseudo-Maximum
Likelihood estimator. We extend the Maximum Likelihood estimator to account for a potential trend in
prices and to exploit the information available from the first observation. This leads to the development
of a new simulated unconditional Maximum Likelihood estimator. We consider only deterministic trend
specifications because this assumption allows the likelihood to be expressed analytically.2 As well as the
case without trend, we consider a multiplicative trend, in which the logarithm of the trend can be linear as
in Cafiero et al. (2011a), Bobenrieth et al. (2013, 2014), and Guerra et al. (forthcoming), or represented
by a restricted cubic spline as in Roberts and Schlenker (2013). For the thirteen storable commodities
considered in Deaton and Laroque (1992), there is a model with trend which presents a lower Akaike
information criterion than the model without trend. Our estimates for the preferred models more closely
replicate the key features of the data and allow for the occurrence of stockouts in line with the observed
two-regime structure of long periods of stable prices interrupted by isolated spike episodes.

The remainder of the paper is organized as follows. Section 2 describes the competitive storage

1See also Ferroni (2011) for an application.
2Stochastic trends would require a non-linear state-space approach and the use of particle filters (Fernández-Villaverde and

Rubio-Ramírez, 2007), a promising but challenging approach for a model as non-linear as the storage model.
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model discussed and estimated in Deaton and Laroque (1992, 1996) and Cafiero et al. (2011b). Section 3
presents the econometric procedure used to estimate the storage model with multiplicative deterministic
trend, and describes how the unconditional maximum likelihood estimator is constructed. Section 4
presents the empirical results, and section 5 concludes.

2 The model

2.1 Model equations

We adopt the standard competitive storage model with no supply response, constant marginal storage
cost, and no stock deterioration in line with Cafiero et al. (2011b). The exogenous supply is modeled by
i.i.d. random production shocks εt following a normal distribution with mean µ and standard deviation
σ truncated at five standard deviations. The demand for commodities consists of a demand for current
consumption Ct associated with the inverse demand function D−1 (Ct) = a+bCt , which is assumed to be
linear with fixed parameters a and b < 0, and a speculative demand from competitive risk-neutral storers.
Storers carry over St ≥ 0 units of the commodity into the next period whenever they expect a positive
return to storage over the interest and physical storage costs, and otherwise sell their past inventories.
Assuming rational expectations and taking account of the non-negativity constraint on storage yields the
following arbitrage condition:

β Et Pt+1−Pt − k ≤ 0, = 0 if St > 0, (1)

where β = 1/(1+ r) is the discount factor which is assumed to be fixed, k ≥ 0 is the constant per
unit physical cost of storage, Pt is the price, and Et is the expectation operator conditional on period t
information. In equilibrium, supply equals total demand such that

At = St +D(Pt) , (2)

where the amount on hand At at time t is the sum of the past inventories and the stochastic production εt

written as
At ≡ St−1 + εt , (3)

with At ∈ A≡ [−5σ ,∞).
Combined with the market clearing condition, the arbitrage condition (1) leads to two regimes in the

price dynamics:
Pt = max

[
β Et Pt+1− k,D−1 (At)

]
. (4)

The first regime holds when speculators stockpile expecting the future price to cover the full carrying
costs and the purchasing cost. The second regime defines the stockout situation with empty inventories,
where the market price is determined only by the final demand for consumption and the amount on hand
in the market.

For this problem, a stationary rational expectations equilibrium is a price function P : A→ R which
describes price as a function of contemporaneous availability. From equation (4), this price function
satisfies for all At

P(At) = max
[
β Et P (St + εt+1)− k,D−1 (At)

]
, (5)
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where, from (2), St is given by
St = At −D(P (At)) . (6)

Building on Deaton and Laroque (1992), Cafiero et al. (2011b) prove that for this model there is a unique
stationary rational expectations equilibrium P in the class of continuous non-increasing functions.3 If we
define P∗ ≡ β EP (ε)− k, the cutoff price for no storage, the price function has the following properties:

P (A) = D−1 (A) , for A≤ D(P∗) , (7)

P (A)> D−1 (A) , for A > D(P∗) . (8)

So P∗, which depends on the price function, defines the threshold between the two regimes. Prices above
P∗ are too high to make storage profitable, while for prices below P∗ some stocks are carried over.

2.2 Numerical method

There is no closed-form solution for the equilibrium price function, which has to be approximated
numerically. The numerical method follows the fixed-point approach proposed by Deaton and Laroque
(1992). The equilibrium price function is approximated with a cubic spline over a grid of equally
spaced availability points lying between −2 and 20. The expectation term in equation (5) is replaced
by a sum by discretizing the truncated normal distribution of the production shocks ε using a Gaussian
quadrature calculated by the method of moments, with N = 10 nodes, where the production shocks and
their associated probabilities are denoted εn and πn. Then, using that production shocks are i.i.d., and
combining (5) and (6) we have

P (A) = max

[
β

N

∑
n=1

π
nP (A−D(P (A))+ ε

n)− k,D−1 (A)

]
. (9)

The model is solved by iterating on this functional equation. Starting from a first guess for the price
function, a price function applied on the right-hand side to all grid points leads by simple arithmetic
operations to new values of the price function at the grid points on the left-hand side. The iterations stop
when the Euclidean distance between two consecutive price functions at the interpolating nodes falls
below a given tolerance threshold which we set to 10 decimal places.

Cafiero et al. (2011b) show that the estimation procedure is very sensitive to the accuracy of the
model’s numerical solution, which is determined mainly by the number of grid points used to approximate
the policy function P (A). These authors show that Deaton and Laroque (1996) approximate the policy
function on a grid that is too sparse to locate accurately the kink at the cutoff price P∗ of empty stocks,
which partly explains the inability of the storage model to generate the high serial correlation. Using a
finer grid of 1,000 nodes, Cafiero et al. (2011b) obtain estimations of the parameters for which the storage
model induces higher price autocorrelations. We retain their findings and choose a grid of 1,000 points.

3Cafiero et al. (2015) extend the proof to a model with free disposal and with a production support that may be unbounded.
Free disposal has the advantage to prevent the realization of negative equilibrium prices, but increases significantly the time
required to solve the model numerically preventing us from implementing it in this paper.
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2.3 How can storage generate high serial correlation?

The debate over the empirical relevance of the storage model revolves around its ability to generate the
high serial correlation observed in the data. Here, we explore the combination of parameters that allows
the model to generate high serial correlation. Our storage model has six parameters, {a,b,k,r,µ,σ}. In
the remainder of this paper, we follow Deaton and Laroque (1996) and Cafiero et al. (2015) by fixing r
at 5%. Deaton and Laroque (1996, Proposition 1) prove that it is not possible to identify separately the
demand function and the distribution of supply shocks. So in this section, we set the mean and standard
deviation of the harvest at 1 and 0.05.4 The mean price over the model asymptotic distribution is set to 1,
which implies a+b = 1. Two degrees of freedom remain: storage cost and demand elasticity. We vary
them to see how this affects the serial correlation. Given our assumptions, k can be interpreted as the
ratio of storage costs with respect to the mean price, and the demand elasticity calculated at the mean
price is simply equal to 1/b.

To analyze the effect of storage cost on serial correlation, we set demand elasticity at −0.05, corre-
sponding to Roberts and Schlenker’s (2013) best estimate of the elasticity of a caloric aggregate of the
major crops. We vary storage costs between 0 and 20 percent of the mean price, and for every value of
storage cost we solve the model and simulate it. We calculate the first-order autocorrelation for 100,000
series of 100 periods on the asymptotic distribution. As noted by Cafiero et al. (2011b), simulating the
storage model generates time series with very volatile moments when the series length is around the
number of observable annual prices (close to one hundred years). Therefore, it is not sufficient to compare
the serial correlation of observable price to the average simulated first-order autocorrelation, we need
also to compare it to the quantiles of the distribution of simulated first-order autocorrelation. The left
panel of figure 1 displays the 5th, 50th, and 95th percentiles of the distribution of simulated first-order
autocorrelation when we vary the storage cost. Serial correlation is a monotonically decreasing function
of storage cost. This can be explained by the fact that the storage model displays two regimes. In one
regime, there are positive stocks and prices are serially correlated. In the other, stocks are zero and prices
are not serially correlated. The more time that is spent in the stockout regime, the lower will be the overall
serial correlation generated by the model. Decreasing the storage cost makes storage more profitable,
increases stock levels, thereby decreasing the likelihood of a stockout and increasing the serial correlation.
With this calibration, even for a zero storage cost, the median first-order autocorrelation is well below the
very high correlation observed in the price series (above 0.82 for all commodities except sugar). Even the
95th percentile is below 0.8.

This failure of the storage model to induce sufficient serial correlation in prices calls for a parameteri-
zation that is even more favorable to storage. This can be achieved by rotating the slope of the demand
function around its mean. Indeed, in absence of inventories to buffer against short supply, the price
adjustments are dictated only by the final demand for consumption. So the more inelastic the demand, the
steeper the variations in prices and the greater the incentive to store. We set the storage cost at its zero
lower bound and vary the demand elasticity between −0.4 and −0.005 (right panel of figure 1). Only for
a very inelastic demand curve is the median of simulated first-order autocorrelation close to 0.8. The
95th percentile can be compatible with a first-order autocorrelation of 0.8 for a demand elasticity above
−0.037.

4A coefficient of variation of 5% for supply shocks is between what is observed for the commodities considered in this paper
(see table A3 in the online appendix).
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Figure 1: First-order autocorrelation implied by the storage model over 100 periods for several values of
storage cost (with demand elasticity set at −0.05) and demand elasticity (with storage cost set at 0)

In the storage model with i.i.d. supply shocks, stockpiling is the sole source of time-dependency in
prices, so only a model parameterization in which storage arbitrage is often active can generate high
serial correlations. The model can generate high serial correlation only by decreasing the occurrence of
stockouts which requires a parameterization of very low storage cost and very inelastic demand. So in the
estimations that follow, we should expect that a storage model able to replicate the characteristics of the
raw price series will be characterized by low storage costs and inelastic demand functions. Even with
this combination, high first-order correlation is achieved only by the high percentiles of the asymptotic
distribution.

3 Econometric procedure

In this section, following Canova (2014), we propose an econometric procedure to estimate the storage
model and the trend in prices jointly. The idea behind this procedure is to capture in the trend the
component of prices that cannot be accounted for by the storage model, in particular the non-cyclical
fluctuations. As a result, the storage model has to account only for cyclical fluctuations in the observed
data. We assume that observed prices, Pobs

t , can be decomposed into a multiplicative trend exp
[
Γ
(
t,θ Γ

)]
and a cyclical component denoted Psto

t to be explained by the storage model:

Pobs
t = eΓ(t,θ Γ)Psto

t . (10)

The vector of the parameters to be estimated θ can be split into two groups: the trend parameters θ Γ, and
the structural parameters of the storage model, θ sto. In addition to the baseline case where any trend is
ignored we consider three deterministic time trend specifications. In none of the trend specifications do
we introduce an intercept because it would not be possible to identify separately the intercept of the trend
from the intercept of the inverse demand function since both would be determined by the mean level of
observed prices.
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3.1 Trend specifications

No trend Our benchmark situation is where observed prices are assumed to be without trend. In this
case, Γ

(
t,θ Γ

)
= 0, Pobs

t = Psto
t , and θ Γ is empty.

Linear trend Here we assume the trend is a deterministic linear time trend:

Γ
(
t,θ Γ

)
= g1t. (11)

In this case θ Γ = {g1}. For numerical stability, the time variable, t, is taken to vary between −1 and 1.

Restricted cubic splines While the linear trend allows us to capture the overall long-run trend, it
may not capture all the non-cyclical fluctuations that the storage model is unable to explain. It is often
considered that trends in commodity prices might be non-constant (a feature captured, e.g., in Arezki
et al., 2014, by a piecewise linear trend with structural breaks). For a more flexible trend than in the linear
case, we use restricted cubic splines. Cubic splines are piecewise cubic polynomials with continuous
first and second derivatives. “Restricted” splines are splines that are constrained to be linear beyond the
boundary knots which avoids a poor behavior in the tails, a feature common to polynomial trends. A
restricted cubic spline with three knots has two parameters. With four knots, it has three parameters. So
restricted cubic splines with three and four knots have the same degrees of freedom as quadratic and
cubic polynomials but tend to be slightly more flexible. A spline with two knots would be the same as the
linear trend above. Restricted cubic splines with three to five knots are also used in Roberts and Schlenker
(2013) to capture trends in prices and quantities of agricultural commodities.

When represented by restricted cubic splines, the trend is expressed as

Γ
(
t,θ Γ

)
=

I

∑
i=1

giBi (t) , (12)

where I and Bi (·) are the degree of freedom and the basis functions of the spline,5 and gi are the trend
parameters to be estimated. The Bi (·) are functions of the knots, but once the knots are fixed the trend is
linear in its parameters. Following the heuristics proposed in Harrell (2001), the knots for the cubic spline
with three knots are located at the 10th, 50th, and 90th quantiles of the covariate, which correspond in our
1900–2011 sample to the years 1911, 1956, and 2000. The spline with four knots uses as knots the 5th,
35th, 65th, and 95th quantiles (1905, 1939, 1970, and 2006).

Since the knots are fixed before the estimation, only the slope parameters have to be estimated:
θ Γ = {gi}I

i=1.

3.2 The likelihood estimator

Given that the price function P is monotone decreasing (Deaton and Laroque, 1992, Theorem 1, and
Cafiero et al., 2011b), we can invert it to obtain the amount on hand from the price. Using the inverse of
the price function, the cyclical component of prices, Psto, follows a first-order Markov process with the

5For numerical stability, the splines are expressed in B-spline form and their basis matrices come from the command ns in
the R package splines.
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transition equation defined by equations (3) and (6) as

Psto
t = P

(
P−1 (Psto

t−1
)
−D

(
Psto

t−1
)
+ εt

)
. (13)

It is possible to link Psto
t to observed prices, Pobs

t , using equation (10). So, given the price function P ,
equations (10) and (13) define a mapping from the supply shocks εt to Pobs

t , conditional on Pobs
t−1 and t.

Given a set of model parameters θ and a sample of observed prices of length T , noted Pobs
1:T ≡{

Pobs
1 , . . . ,Pobs

T
}

, and using the Markov structure of the problem, the likelihood function can be expressed
as

L
(
θ ;Pobs

1:T
)
= f

(
Pobs

1 ;θ
) T

∏
t=2

f
(
Pobs

t |Pobs
t−1;θ

)
. (14)

Using the mapping between observables and shocks, Miranda and Rui (1999) and Cafiero et al. (2015)
obtain the conditional density f

(
Pobs

t |Pobs
t−1;θ

)
from the variable transformation method. Identification

of the parameters of the demand function requires the parameters of the distribution of shocks to be
set to arbitrary values. From here, the distribution of ε is assumed to be the unit normal distribution
truncated at five standard deviations, with probability density function fε (ε) = φ (ε)/ [Φ(5)−Φ(−5)]
for ε ∈ [−5,5] and fε (ε) = 0 otherwise. We can write the conditional density of Pobs

t as:

f
(
Pobs

t |Pobs
t−1;θ

)
= fε (εt) |Jt | , (15)

where |Jt | is the determinant of the Jacobian of the mapping Pobs
t 7→ εt .

Based on equations (10) and (13), this mapping is

εt = P−1 (Psto
t
)
−
[
P−1 (Psto

t−1
)
−D

(
Psto

t−1
)]
,

= P−1
(

e−Γ(t,θ Γ)Pobs
t

)
−
[
P−1

(
e−Γ(t−1,θ Γ)Pobs

t−1

)
−D

(
e−Γ(t−1,θ Γ)Pobs

t−1

)]
,

(16)

which gives the expression of Jt :

Jt = e−Γ(t,θ Γ)P−1′
(

e−Γ(t,θ Γ)Pobs
t

)
. (17)

The probability of any element of Psto
1:T being equal to P∗ is zero, so the derivative of P−1 exists almost

everywhere.
In this paper we extend the Conditional Maximum Likelihood Estimator pioneered by Cafiero et al.

(2015) to its unconditional counterpart. The aim is to use all the available information from the first
observation by accounting for the marginal density f

(
Pobs

1 ;θ
)

in equation (14). The marginal density
f
(
Pobs

1 ;θ
)

can be expressed as the following integral over the steady-state distribution:

f
(
Pobs

1 ;θ
)
=
∫

P0

f
(
Pobs

1 |P0;θ
)

f (P0;θ)dP0. (18)

This integral is intractable, because there is no closed-form solution for the steady-state distribution
of the storage model. However, we can draw from the distribution with density f (P0;θ), which is the
unconditional probability density function of price in the storage model. Therefore, we can use Monte
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Carlo integration to estimate f
(
Pobs

1 ;θ
)

by simulating the model on the stationary distribution:

f
(
Pobs

1 ;θ
)
≈M−1

M

∑
m=1

f
(

Pobs
1 |P

(m)
0 ;θ

)
, (19)

where m= {1, . . . ,M} indexes random draws from the unconditional price distribution. We set the number
of draws M to 1,000,000 and obtain them by simulating 10,000 trajectories starting from the steady state
for 120 periods and discarding the first 20 periods as burn-in periods. The random production shocks
that generate the price simulations are drawn at the beginning of the estimation procedure and remain
fixed throughout. Because of this simulation step, the Unconditional Maximum Likelihood Estimator
falls within the class of simulated estimators.

As is well known in time-series econometrics (Hamilton, 1994, Ch. 5), if the sample size is sufficiently
large the contribution of the first observation to the likelihood is negligible, while it is often much more
complex to calculate the unconditional likelihood than the conditional likelihood. In the case of the storage
model, it is true that the simulations necessary to calculate the marginal density make the likelihood
evaluation much more costly. In Monte Carlo experiments designed following Michaelides and Ng
(2000) and Cafiero et al. (2015), the unconditional likelihood performs only marginally better than the
conditional likelihood.6 However, when using an actual sample, the unconditional likelihood has benefits
which in our view outweigh its costs. For observed prices the conditional likelihood presents many local
optima. The unconditional likelihood helps to select an optimum with an unconditional price distribution
not too far from the price sample which may not be the case for a conditional likelihood. Indeed, in order
to fit the high serial correlation of the data, the Conditional Maximum Likelihood Estimator often leads
to parameter estimates for which the availabilities corresponding to observed prices (calculated using
P−1) are set at very high levels which would correspond to very high stock levels. Observing large stock
levels may have a high probability conditional on having large stocks in the previous period, but the
unconditional probability of such a situation is very low. So, the Unconditional Maximum Likelihood
Estimator helps to filter out some of these situations.

Based on all the previous elements, we can write the log-likelihood as

logL
(
θ ;Pobs

1:T
)
=−T

2
log2π−T log [Φ(5)−Φ(−5)]+

T

∑
t=1

[
−Γ
(
t,θ Γ

)
+ log

∣∣∣P−1′
(

e−Γ(t,θ Γ)Pobs
t

)∣∣∣]
−

T

∑
t=2

(
1|εt |≤5 · ε2

t +1|εt |>5 ·∞
)/

2+ log

(
M−1

M

∑
m=1

1|ε(m)|≤5 · exp
(
−ε

(m)2/
2
))

, (20)

where 1 is the indicator function and ε(m) = P−1
(
exp
(
−Γ
(
1,θ Γ

))
Pobs

1

)
−S(m)

0 . Given that the interest
rate and the parameters of the distribution of production shocks have been fixed, there are three parameters
that we need to estimate for the storage model θ sto = {a,b,k}, in addition to the parameters characterizing
the trend, θ Γ, defined above. From a set of parameters θ provided by the optimization algorithm, we
calculate the detrended price Psto and solve for the policy function of the storage model P (·). Using
this policy function, we can simulate the model to calculate the marginal probability and evaluate the
likelihood for this set of parameters.

Evaluated on the observed prices, the above log-likelihood behaves badly. It displays many local

6Results available in section B of the online appendix.
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optima. Gradient-based solvers and derivative-free local search methods converge only to local optima
which are very sensitive to first guesses. Thus, we need to apply a global search algorithm to increase
the likelihood of obtaining a global solution. Following a recent review of derivative-free algorithms
(Rios and Sahinidis, 2013), and some tests on our problem, we choose a global solver, the particle swarm
pattern search algorithm proposed by Vaz and Vicente (2007), and refine the solution it delivers with a
local solver using a sequential quadratic programming approach (Nocedal and Wright, 2006, Ch. 18).
Parameters are constrained to remain within bounds (this is required by the global solver). b is constrained
to be strictly negative (≤ −0.001) and k to be positive or null. All the other bounds are chosen to be
low enough or high enough to avoid their being binding. The particle swarm solver is initialized with
700 vectors of first-guess parameters, a combination of educated guesses, random draws, and vectors
of previous solutions (e.g., the estimation without trend serves as a first guess for the linear trend). The
tolerance for both optimization solvers is fixed at 10−6.

Once a maximum has been identified, we estimate the asymptotic variance-covariance matrix of the
parameters as the inverse of the outer product of the scores. If the highest log-likelihood is obtained
with k constrained at its zero lower bound, calculating the variance-covariance matrix using the scores is
inappropriate, and other methods such as bootstrap should be used. However, the number of estimations
run in this paper prevents us from using the bootstrap method. For the estimates with k at zero, we do not
report the standard errors for k but report the standard errors of the other parameters obtained using the
inverse of the outer product of the scores by maintaining k at zero.

4 Estimation results

4.1 Data

Our data set is composed of the thirteen commodities analyzed in Deaton and Laroque (1992) (banana,
cocoa, coffee, copper, cotton, jute, maize, palm oil, rice, sugar, tea, tin, and wheat). The original price
series from Grilli and Yang (1988) is extended by Pfaffenzeller et al. (2007) and cover the period 1900 to
2011. The data were downloaded from Stephan Pfaffenzeller’s personal website.7 The data are annual
price indexes calculated by averaging the monthly price data provided by the World Bank Development
Prospects Groups over the calendar year, and normalizing them with respect to the 1977–79 mean price.
We deflated the nominal price indexes by the US CPI.

We use only price data to estimate the storage model but we also rely on shorter series of production
data to illustrate the consequence of our estimations in terms of demand elasticities. The production
data are from the FAOSTAT food balance sheets in the case of the agricultural commodities,8 from
the British Geological Survey in the case of tin,9 and from the 2014 World Copper Factbook of the
International Copper Study Group for copper.10 They cover the period 1961 to 2011. For each commodity,
the logarithm of production is detrended by modeling the trend by a restricted cubic spline with five knots
(as in Roberts and Schlenker, 2013).11

7http://www.stephan-pfaffenzeller.com
8http://faostat.fao.org/
9http://www.bgs.ac.uk/mineralsuk/statistics/home.html

10http://www.icsg.org/index.php/statistics/selected-data
11The knots are located at 1964, 1975, 1986, 1998, and 2008 as suggested by Harrell (2001).
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4.2 Model selection

Joint estimation of the structural and the trend parameters allows us to select the preferred trend specifica-
tion using model selection criteria. The various trends nest the specification without trend; however, the
spline with four knots does not nest the spline with three knots, because the splines do not have same
boundary knots. Thus, it is not possible to select the trend using a likelihood ratio test.12 We select the
preferred trend specification using the Akaike Information Criterion (AIC). The results are reported in
table 1 which presents the values for the preferred models in boldface. For the model without trend
the AIC is given in level, while for the three models with trend they are given in ratios to the AIC of
the model without trend so that a value above unity means a lower AIC than the model without trend.
The model without trend is never retained for any of the commodities. The model with a linear trend is
preferred for copper, palm oil, and wheat. The model with a three-knot spline trend (RCS3) is preferred
for coffee, cotton, jute, rice, and sugar. The model with a four-knot spline trend (RCS4) is preferred for
banana, cocoa, maize, tea, and tin.

Table 1: Model Selection Using the Akaike Information Criterion

Commodity No trend Linear RCS3 RCS4

Banana −309.823 1.030 1.069 1.070
Cocoa −417.014 0.998 1.010 1.025
Coffee −377.997 0.995 1.005 1.000
Copper −236.051 1.000 0.993 0.997
Cotton −231.181 0.992 1.021 1.011
Jute −184.036 1.015 1.056 1.045
Maize −159.578 0.998 1.002 1.038
Palm oil −219.800 1.042 1.040 1.034
Rice −219.357 1.105 1.114 1.104
Sugar −93.022 1.189 1.198 1.179
Tea −275.557 1.011 1.010 1.014
Tin −406.411 0.996 1.006 1.006
Wheat −189.445 1.054 1.046 1.054

Note: For the “No trend” column, the AIC are given in levels while for the other columns they are reported in ratios to the “No
trend” column so that a value above unity means a lower AIC than the model without trend. The preferred model for each
commodity is in boldface.

4.3 No trend

The parameter estimates for the model without trend are given in table 2. In this setting without stock
deterioration, estimates of a in the first column are directly interpretable as the ergodic means of the
models. Thus, it would be reasonable to expect a to be not too far from the observed sample means
reported in table 3, even if the sample mean is not the maximum likelihood estimator of a. However,
this is not the case. With the exception of sugar, a is systematically higher than the sample mean, and
for some commodities by a large margin. For example, a exceeds the sample mean by 255 percent for
banana, 227 for cotton, 122 for rice, or 80 for wheat. This “bias” could be related to the presence of a

12Even if the models were all nested, a likelihood ratio test could not be applied to all commodities, because some estimations
of k are constrained on their lower bound.
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trend in the observables. A trend would generate a serial correlation higher than expected from storage
alone. Estimating the ergodic mean of the model at above the sample mean implies that the sample is
located in a region of larger than normal availabilities, and with large availabilities there are important
stocks, and prices are more positively correlated than if availabilities are close to normal.

Table 2: Parameter Estimates Without Trend

Commodity a b k logL P∗ # Stockouts

Banana 1.9078 −3.8117 0.0011 157.9117 3.6291 0
(0.6159) (2.3678) (0.0037)

Cocoa 0.1826 −0.8604 0.0002 211.5072 0.6149 0
(0.0383) (0.0930) (0.0009)

Coffee 0.2571 −0.8959 0.0015 191.9984 0.6876 0
(0.0259) (0.0656) (0.0009)

Copper 0.6339 −1.1740 0.0046 121.0254 1.1461 0
(0.0540) (0.1382) (0.0034)

Cotton 1.7832 −6.1122 0.0029 118.5906 4.7461 0
(0.7019) (3.9400) (0.0027)

Jute 0.6934 −1.7440 0.0050 95.0180 1.4927 0
(0.0970) (0.2308) (0.0049)

Maize 0.7058 −2.3422 0.0009 82.7891 1.8374 0
(0.0816) (0.1738) (0.0030)

Palm oil 0.7311 −1.5067 0.0097 112.8999 1.3887 1
(0.0802) (0.1708) (0.0046)

Rice 1.1766 −5.2418 0 112.6784 3.8021 0
(0.3604) (2.2061) –

Sugar 0.5362 −1.9907 0.0050 49.5109 1.4926 3
(0.0521) (0.1123) (0.0026)

Tea 1.0839 −3.6411 0 140.7786 2.8518 0
(0.4672) (2.2116) –

Tin 0.3606 −1.0371 0.0023 206.2057 0.8462 0
(0.0509) (0.2022) (0.0015)

Wheat 1.0926 −3.9100 0 97.7225 3.0058 0
(0.1819) (1.0561) –

Note: Asymptotic standard errors in parentheses.

The limited number of stockouts confirms that the estimations localize all the samples in regions with
large availability. With the exception of palm oil and sugar for which the respective number of periods
without stocks over the sample are 1 and 3, commodity prices are always under their respective cutoff
price P∗ implying that inventories were carried over the whole 112 years of the sample. This feature is
present also in the estimations in Cafiero et al. (2011b), where only sugar displays stockouts. In the model,
stockouts occur when prices exceed P∗. Our estimations show that on average over all commodities, P∗

exceeds its corresponding sample means by 4.5 times, making stockouts unlikely.
Figure 2 illustrates this in the case of wheat. Most observed prices are below the ergodic mean of

the model, and all are far from P∗. If we compare the localization of the observed prices to the ergodic
distribution of availability, we see that the observations are concentrated to the right of the distribution
mode. The observations look more like an extreme sample in which the level of availability, and thus the
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Table 3: Comparisons of Data Features and Predictions of the Model Without Trend

One-year Two-year Coefficient Excess
Commodity Mean a-c a-c of variation Skewness kurtosis

Banana 0.54∗∗∗ 0.95∗∗∗ 0.90∗∗∗ 0.23∗∗∗ −0.27∗∗∗ −0.77∗∗∗

Cocoa 0.17 0.86 0.71 0.60 1.24 1.64
Coffee 0.20 0.84 0.68 0.50 1.61 3.89
Copper 0.47• 0.83∗ 0.64 0.40 0.90∗ 0.56∗

Cotton 0.55∗∗ 0.94∗∗∗ 0.85∗∗ 0.51 0.20∗∗∗ −0.61∗∗

Jute 0.52 0.84• 0.70 0.44• 0.41∗∗ −0.23∗∗

Maize 0.61 0.86 0.73 0.51 0.84• 1.22
Palm oil 0.46∗∗ 0.82∗ 0.65 0.60 2.43 11.84
Rice 0.53• 0.91• 0.79 0.50 0.42∗∗ −0.39∗∗

Sugar 0.61 0.70 0.51 0.69 1.62 3.45
Tea 0.45∗∗ 0.90∗ 0.81∗ 0.38∗ −0.02∗∗∗ −0.80∗∗∗

Tin 0.20∗ 0.90∗∗ 0.78∗ 0.47• 1.48 2.84
Wheat 0.61• 0.91∗ 0.79• 0.47 0.82• 0.39•

Notes: Moments calculated on the observed prices Pobs. ∗∗∗, ∗∗, ∗, and • indicate if the moments of observed prices are outside
the 1%, 5%, 10%, and 20% two-sided percentiles of the simulated moments.

stock level are always high, than a typical sample from the distribution.
The small number of stockouts, and localization of the samples in regions with large availabilities

question the empirical relevance of the storage model. This model is supposed to alternate between two
regimes with relatively stable prices when there are stocks, and spikes during stockouts. If there are no
stockouts, price spikes are explained by adverse production shocks only. They do not correspond to a
much steeper part of the demand function and should be as likely as price troughs, which is not consistent
with the stylized facts. Most commodity prices present a positive skewness (table 3) and there are few
downward spikes to match the upward spikes (Deaton and Laroque, 1992).

Section 2.3 showed that the storage model can generate high serial correlation only with parameteriza-
tion of very low storage cost and very inelastic demand. We next examine the magnitude of the estimated
storage costs and demand elasticities. k/a is the ratio of storage cost to the ergodic mean price, so it
is unit-free and directly interpretable. Because we assumed that supply shocks follow a truncated unit
normal, it is not possible to recover the demand elasticity only from the demand function. To calculate
the demand elasticity, we use Deaton and Laroque’s (1996) Proposition 1 which shows that re-scaling the
distribution of supply shocks to have mean and standard deviation µ and σ while adjusting the inverse
demand function to D̃−1 (Ct) = (a−bµ/σ)+bCt/σ does not affect the distribution of prices. Using this
adjusted demand function, the demand elasticity evaluated at the model’s ergodic mean price is given
by aσ/(bµ).13 The coefficient of variation of the supply shocks, σ/µ , is obtained by calculating the
standard deviation of the detrended logarithm of production, and is provided in the online appendix.14

13A similar approach is used in Guerra et al. (forthcoming).
14While reformulating the estimates as unit-free parameters is necessary to compare them between trend specifications, the

expression as a demand elasticity relies on a literal interpretation of the storage model. In this specification of the storage model,
additive demand shocks are equivalent to additive negative supply shocks, and thus the supply shocks in the model should be
interpreted as net-supply shocks. If we assume that demand and supply shocks are uncorrelated, the elasticities calculated using
only the coefficient of variation of supply will be downward biased. For staple food markets, where price volatility is often
believed to arise from supply shocks the bias may be small, but it may be larger for commodities more subject to demand shocks
such as metals.
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Figure 2: Estimated storage model for wheat without trend. Lower panel: price function, P (A), with
observed prices on it noted +. Upper panel: ergodic distribution of availability.

The estimated storage costs and price elasticities of demand are consistent with the results in
section 2.3: both are low (table 4). The estimated storage costs are below 1 percent of the ergodic price
for all commodities except palm oil, and are null for three commodities: rice, tea, and wheat. Information
on storage costs to which we could compare these estimates are not readily available for all commodities.
However, in a study of the grain chain in Middle East and North African countries, World Bank and FAO
(2012, figure 2-4) report that the storage cost of wheat in the US was equal to US$ 24.24 per ton in 2009,
which would represent around 10% of the recent price of wheat. So, at least for cereals, the estimates of
storage costs appear to be low.

In the model without trend, our implied price elasticities of consumption are comparable to those
derived from other estimations of the storage model (see table 4 in Guerra et al., forthcoming). If we
focus on the cereals, although these elasticities are plausible, in absolute value they appear to be in the
low range of the elasticities in the literature (e.g., Seale and Regmi, 2006; Adjemian and Smith, 2012;
Roberts and Schlenker, 2013). We would expect smaller elasticities than in most of the literature because
most estimation methods do not account for the presence of stocks which tend to create a positive bias.
Nevertheless, even Roberts and Schlenker (2013) who control for the effect of storage using instrumental
variables find higher elasticities of demand, between −0.066 and −0.028 for aggregate calories from
maize, rice, soybeans and wheat, and even higher values for each commodity individually.
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Table 4: Estimated Values of Storage Costs and Demand Elasticities

Storage costs: 100 · k/a Price elasticity of demand: aσ/(bµ)

Commodity No trend Linear RCS3 RCS4 No trend Linear RCS3 RCS4

Banana 0.06 0 0 0 −0.018 −0.033 −0.029 −0.029
(0.19) – – – (0.013) (0.004) (0.009) (0.008)

Cocoa 0.11 0.19 0.05 0.53 −0.015 −0.015 −0.015 −0.027
(0.51) (0.54) (0.23) (0.63) (0.004) (0.004) (0.010) (0.009)

Coffee 0.59 0.59 1.41 1.41 −0.022 −0.022 −0.037 −0.037
(0.35) (0.35) (1.01) (1.07) (0.003) (0.003) (0.010) (0.010)

Copper 0.72 1.09 0.99 0.07 −0.024 −0.028 −0.028 −0.019
(0.54) (0.67) (0.70) (0.59) (0.004) (0.004) (0.005) (0.005)

Cotton 0.16 0.19 0.34 0.34 −0.021 −0.022 −0.029 −0.029
(0.17) (0.43) (0.43) (0.50) (0.016) (0.038) (0.015) (0.020)

Jute 0.72 0.42 2.35 2.34 −0.045 −0.045 −0.104 −0.104
(0.71) (0.96) (0.91) (0.99) (0.009) (0.008) (0.009) (0.015)

Maize 0.13 1.07 1.34 3.25 −0.018 −0.030 −0.036 −0.062
(0.43) (0.83) (0.80) (0.75) (0.002) (0.004) (0.005) (0.005)

Palm oil 1.33 1.20 1.40 1.43 −0.023 −0.027 −0.028 −0.028
(0.64) (0.91) (0.88) (0.98) (0.004) (0.004) (0.004) (0.008)

Rice 0 0.28 0.30 0.33 −0.006 −0.014 −0.016 −0.016
– (0.51) (0.54) (0.55) (0.003) (0.002) (0.004) (0.005)

Sugar 0.94 2.27 2.43 2.35 −0.010 −0.020 −0.019 −0.019
(0.49) (0.81) (1.03) (0.99) (0.001) (0.002) (0.002) (0.003)

Tea 0 0.57 0.95 0.89 −0.006 −0.011 −0.014 −0.014
– (0.36) (0.51) (0.46) (0.005) (0.002) (0.004) (0.005)

Tin 0.63 0.26 0 0 −0.019 −0.015 −0.014 −0.017
(0.43) (0.21) – – (0.005) (0.005) (0.003) (0.002)

Wheat 0 1.11 1.18 0 −0.012 −0.033 −0.034 −0.025
– (0.77) (0.80) – (0.004) (0.005) (0.005) (0.005)

Notes: The preferred model values are in boldface and in parentheses the asymptotic standard errors obtained using the delta
method.

4.4 Models with a time trend

The parameter estimates for the model with a linear trend are given in table 5. Since for numerical
stability the time variable has been defined over the interval [−1,1], the trend coefficient g1 is not directly
interpretable. To make it interpretable, we report it also as annual growth rates in column G, where
the standard deviation is calculated using the Delta method. For all commodities except tin, the annual
growth rate is negative, which is consistent the Prebisch-Singer hypothesis of a long-run downward trend
in commodity prices. If we exclude coffee and tin, the values range from an annual decline of 0.4 percent
for copper to 1.94 percent for rice. The significance of many trend coefficients indicates that the model
without trend is likely to be misspecified.

For the other trend specifications, since the trend and the structural parameters are not directly
interpretable, the complete results are not displayed here. They are provided in the online appendix,
along with a figure plotting the various trends with real prices. Rather than presenting detailed results,
table 4 presents the parameters estimates expressed in a way that makes them comparable across trend
specifications. The presence of a deterministic time trend in the model estimation can lead to large effects
in terms of the key parameter estimates. Storage costs tend to increase when there is a trend, and also
price elasticity of demand in absolute value. With the preferred model (in boldface) ten out of the thirteen
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Table 5: Parameter Estimates with a Linear Trend

Commodity G g1 a b k logL # Stockouts

Banana −0.0161 −0.8909 0.8770 −0.9756 0 163.4962 0
(0.0010) (0.0550) (0.0434) (0.1114) –

Cocoa −0.0058 −0.3215 0.2036 −0.9771 0.0004 212.1482 0
(0.0034) (0.1899) (0.0501) (0.1370) (0.0011)

Coffee −0.0000 −0.0008 0.2571 −0.8963 0.0015 191.9992 0
(0.0022) (0.1225) (0.0261) (0.0747) (0.0009)

Copper −0.0040 −0.2218 0.6227 −0.9837 0.0068 122.0631 0
(0.0009) (0.0505) (0.0515) (0.1082) (0.0042)

Cotton −0.0045 −0.2476 1.5846 −5.3011 0.0031 118.6970 0
(0.0148) (0.8197) (1.4137) (8.1716) (0.0062)

Jute −0.0108 −0.6014 0.5357 −1.3389 0.0023 97.4204 0
(0.0014) (0.0784) (0.0856) (0.1182) (0.0051)

Maize −0.0097 −0.5386 0.6957 −1.3722 0.0074 83.6162 0
(0.0012) (0.0671) (0.0694) (0.1400) (0.0057)

Palm oil −0.0179 −0.9921 0.4775 −0.8150 0.0057 118.5360 1
(0.0014) (0.0763) (0.0491) (0.0743) (0.0043)

Rice −0.0194 −1.0755 0.6286 −1.2003 0.0017 125.2477 1
(0.0020) (0.1119) (0.0647) (0.1323) (0.0032)

Sugar −0.0107 −0.5955 0.5811 −1.0836 0.0132 59.2928 5
(0.0005) (0.0282) (0.0415) (0.0725) (0.0046)

Tea −0.0134 −0.7430 0.7637 −1.4313 0.0043 143.2308 0
(0.0034) (0.1904) (0.0623) (0.2095) (0.0027)

Tin 0.0143 0.7932 0.4341 −1.5516 0.0011 206.4246 0
(0.0046) (0.2552) (0.0709) (0.4729) (0.0009)

Wheat −0.0127 −0.7033 0.7133 −0.9266 0.0079 103.8497 1
(0.0011) (0.0600) (0.0531) (0.1104) (0.0055)

Notes: Asymptotic standard errors in parentheses. Column G is a transformation into an annual growth rate of the trend
parameter g1.

commodities present higher storage costs than if there is no trend. With the exception of tin, all price
elasticities are higher with the preferred model. The differences between the elasticities estimated with
the models without trend and with the preferred models with trend are important. The elasticities double
in the case of cocoa, coffee, jute, rice, sugar, and tea, and increase three-fold for maize and wheat.

For cereals, the elasticities of the preferred model although still low appear to be more consistent
with the literature. Similarly, the increase in storage costs for cereals leads to more plausible parameters
which nevertheless are low compared to some published figures.

For sugar, we can compare the parameter estimates to the Conditional Maximum Likelihood estimates
of Cafiero et al. (2015). They estimate their model on data from 1921 to 2009, because of a possible
structural break between 1920 and 1921. On this subsample, the stationarity of deflated prices is more
likely to hold (see figure A1 in the online appendix) and the first-order correlation at 0.63 is lower than
the 0.70 obtained over our extended sample. The purpose of our joint estimation approach is precisely to
accommodate for such possible breaks. The preferred model for sugar is the model with a three-knot
spline trend. The estimated trend is decreasing at the beginning of the sample and roughly constant after
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1930 (figure A1 in the online appendix). We express the parameters in ratios to make them comparable
across specifications. For 100 · k/a, our estimation is 2.43 (table A4 in the online appendix) and theirs
is 2.23 (Cafiero et al., 2015, Table 3, ML setting d = 0). For a/b, our estimation is −0.52 and theirs is
−0.49. The estimations are very close, while they are very different if we use our estimation without
trend (100 · k/a = 0.94 and a/b = −0.27). This could indicate that for sugar our strategy succeeds in
removing a source of non-stationarity in the original series.

4.5 Model predictions

Since one of the main critiques of the storage model is its inability to reproduce the observed serial
correlation, one way to assess our new estimates is to compare the model predictions to the features of
the data. For samples of the same length of the observables, a storage model generates moments that
are highly volatile, so comparing the ergodic moments and observed moments would be inappropriate.
We adopt the approach in Cafiero et al. (2011b): we match the observed moments to their corresponding
percentiles in the ergodic distribution of the estimated model. The model predictions are consistent
with the data when the percentiles are neither too low nor too high. We calculate the mean, first- and
second-order correlations, coefficient of variation, skewness, and kurtosis for the observations. For the
model with trend, the moments are calculated on the cyclical component of prices, Psto, which is the
component that the storage model is supposed to explain. We calculate the corresponding percentiles
from 1,000,000 series of 112 periods from the asymptotic distribution.

The moments and their localization with respect to simulated percentiles are given in table 3 for
the model without trend and in table 6 for the preferred model with trend. All moments from the
observations are located within the implied empirical distribution of the models without and with trend.
The corresponding percentiles are used to build symmetric confidence regions. As already noted by
Cafiero et al. (2011b), if the model without trend is solved and estimated with a sufficiently precise grid, it
is able to generate first-order correlation similar to the observations for several commodities (table 3). The
storage model even appear to fail more often for reproducing the skewness and kurtosis, with observed
moments which frequently are outside the 99 and 95 percent confidence intervals. It should be noted
that the banana and tea price series present negative skewness, which makes them nearly impossible
to reproduce with a storage model which on average generates positive skewness. When a commodity
presents negative excess kurtosis, which is the case of banana, cotton, jute, rice and tea, it seems that
the estimated model has difficulty reproducing it. Deaton and Laroque (1992, section 2.1) note that the
storage model can produce negative excess kurtosis but only from a calibration with low price volatility
and a limited role for storage, which does not correspond to our estimations.

We turn next to the predictions of the preferred model with trend (table 6). Compared to the model
without trend, there is an improvement in the model predictions: many moments move inside smaller
confidence intervals. However, the predictions for some commodities – banana, jute, and tea – do not
improve. The storage model with the specifications we estimated appears to be unable to match the
moments for these commodities. Due to the deterministic trend, serial correlation decreases and becomes
more consistent with the model predictions. Except for the three commodities for which the storage
model does not work and for maize, all the observed first- and second-order correlations fall inside the
symmetric 95 percent confidence intervals. Similarly, if we exclude banana, jute and tea, then with
the exception of 3 moments that are outside the 90 percent confidence intervals, all other moments are
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Table 6: Comparisons of Data Features and Predictions of the Preferred Models

One-year Two-year Coefficient Excess
Commodity Mean a-c a-c of variation Skewness kurtosis

Banana 0.66∗∗∗ 0.89∗∗∗ 0.81∗∗∗ 0.41 1.66 3.25
Cocoa 0.43 0.82 0.65 0.61 1.76 3.00
Coffee 0.21 0.78 0.59 0.47 1.86 5.97
Copper 0.47∗ 0.80∗ 0.58 0.38• 0.81∗ 0.32∗∗

Cotton 0.79∗∗ 0.66 0.43 0.45 3.38 19.96
Jute 0.62 0.69• 0.40 0.31∗∗ 0.62∗∗∗ 0.17∗∗∗

Maize 0.85 0.69∗∗ 0.46 0.36 1.47 2.79
Palm oil 0.42 0.72 0.47 0.39• 0.99∗ 1.38•

Rice 0.97• 0.76 0.46 0.38 2.17 7.07
Sugar 0.93 0.62 0.35 0.67 3.00 13.73
Tea 0.67∗∗∗ 0.91∗∗∗ 0.85∗∗∗ 0.46 0.46∗∗ 0.01∗∗

Tin 0.11 0.80 0.65 0.58 1.63 3.27
Wheat 0.57∗ 0.75• 0.45 0.31∗ 1.26• 2.17•

Notes: The preferred model is chosen according to the AIC in table 1. Moments calculated on the cyclical component of prices,
Psto. ∗∗∗, ∗∗, ∗, and • indicate if the moments of Psto are outside the 1%, 5%, 10%, and 20% two-sided percentiles of the
simulated moments.

consistent with the predictions of the estimated storage models.
A disturbing feature of the estimations without trend is the very small number (often zero) of implied

stockouts. Considering the possibility of a trend increases the number of implied stockouts, which
becomes positive for many commodities (table 7). However, even if we exclude banana, jute and tea,
three commodities – cocoa, copper, and cotton – present zero stockouts.

Table 7: Number of Implied Stockouts over the Sample Interval

Commodity No trend Linear RCS3 RCS4

Banana 0 0 0 0
Cocoa 0 0 0 0
Coffee 0 0 1 2
Copper 0 0 0 4
Cotton 0 0 0 0
Jute 0 0 4 8
Maize 0 0 3 12
Palm oil 1 1 1 1
Rice 0 1 1 1
Sugar 3 5 8 16
Tea 0 0 0 0
Tin 0 0 0 6
Wheat 0 1 1 0

Note: The preferred model values in boldface.

It is interesting to compare the number of implied stockouts to the probabilities of exceeding a given
number of stockouts. The probabilities of stockouts are calculated in the same way as the price moments
from 1,000,000 series of 112 periods from the asymptotic distribution. The results for the model without
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trend and for the preferred model with trend for at least 1, 2, 3, 5, and 10 stockouts are given in table 8.
Models with trend have much higher probabilities of stockouts than the model without trend. If there
is a trend, the storage costs and the price elasticities are higher than without trend which discourages
storage and leads to higher probabilities of stockouts. Apart from cocoa, cotton and tin, with the preferred
model, samples without stockouts are highly unlikely. Even samples with only one stockout are fairly
unlikely. The parameterization implied by the estimation of a model with trend is much more favorable
to occasional stockouts and so provides a natural explanation for price spikes as periods where stocks are
exhausted.

Table 8: Probabilities of at Least n Stockouts, in Samples of the Same Size as the Data

No-trend model Preferred model

Commodity n = 1 n = 2 n = 3 n = 5 n = 10 n = 1 n = 2 n = 3 n = 5 n = 10

Banana 0.91 0.81 0.70 0.48 0.13 0.98 0.94 0.89 0.73 0.30
Cocoa 0.63 0.47 0.35 0.18 0.02 0.86 0.74 0.62 0.39 0.09
Coffee 0.77 0.63 0.49 0.28 0.05 0.95 0.88 0.79 0.59 0.19
Copper 0.95 0.88 0.79 0.59 0.19 0.98 0.94 0.88 0.72 0.29
Cotton 0.75 0.60 0.47 0.26 0.05 0.87 0.75 0.63 0.41 0.10
Jute 0.88 0.77 0.65 0.43 0.10 1.00 0.99 0.99 0.95 0.68
Maize 0.76 0.61 0.48 0.27 0.05 1.00 1.00 1.00 0.99 0.86
Palm oil 0.95 0.88 0.79 0.59 0.19 0.97 0.92 0.86 0.68 0.26
Rice 0.64 0.49 0.36 0.19 0.02 0.95 0.88 0.79 0.59 0.19
Sugar 0.77 0.63 0.49 0.28 0.05 0.98 0.94 0.88 0.73 0.30
Tea 0.74 0.60 0.46 0.26 0.04 0.98 0.94 0.88 0.73 0.30
Tin 0.84 0.71 0.59 0.36 0.08 0.75 0.60 0.46 0.26 0.04
Wheat 0.72 0.57 0.44 0.24 0.04 0.99 0.97 0.93 0.82 0.41

Note: The preferred model is chosen according to the AIC of table 1.

5 Conclusion

Estimating the competitive storage model on untransformed series of commodity prices leads to very low
demand elasticities and storage costs, which results in a prediction of very infrequent, and often zero,
stockouts over the sample period. These results may stem from the presence of trends in prices, which
could create statistical features difficult to explain by a storage model.

This article proposes a strategy inspired by Canova (2014) to estimate jointly the structural parameters
of a storage model and the parameters characterizing the non-cyclical component of prices for which
the storage model cannot account. For the non-cyclical component of prices, three deterministic time
trends with increasing flexibility were tested and compared with the baseline model which ignores the
possibility of a trend.

Our results show that storage models with trend are always preferred to models without trend,
and the significance of the trend parameters indicates that the model without trend is likely to be
misspecified. Accounting for a trend is quantitatively important for estimating the structural parameters.
For most commodities, the storage model with a deterministic trend yields more plausible estimates of the
structural parameters (e.g., higher storage costs and demand elasticities). It also increases the probability
of observing stockouts, and more closely replicates the most salient features of the price data, including
the high serial correlation which led Deaton and Laroque (1996) to question the relevance of the storage

20



model. For most commodities our results support the empirical relevance of the speculative storage model
which is in line with the recent findings in Cafiero et al. (2011b, 2015) and prove that the joint estimation
approach is a superior procedure to fit the storage model with the data. Future estimations of the storage
model should no longer neglect the possibility of long-run trends in prices.

For banana, jute and tea, three of the commodities originally studied in Deaton and Laroque (1992),
the storage model with or without a deterministic trend fails to reproduce the main features of the price
dynamics. In the case of the specifications in this paper, the storage model is rejected as a relevant model
to explain the price dynamics of these commodities. However, other specifications could be considered.
For simplicity, this paper focused on deterministic time trends which allow an analytical likelihood to
be characterized. The setup could be extended to other trend specifications. For example, only small
changes would be required to account for deterministic trends with structural breaks. The inclusion
of stochastic trends (e.g., ARIMA) would be more difficult. A stochastic trend would prevent a direct
calculation of the likelihood and would require the use of filters for non-linear state-space models (see e.g.,
Fernández-Villaverde and Rubio-Ramírez, 2007, for use of the particle filter to estimate macroeconomic
models).
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Online Appendix

A Computational details

The results were obtained using MATLAB R2014a on a PC with two quad-core processors Intel Xeon
E5345 (2.33 GHz) with 32 GB of RAM running Ubuntu 12.04.5 64 bits. The maximization of the
log-likelihood was done using Vaz and Vicente’s (2007) free particle swarm pattern search software
PSwarm version 2.115 and the MATLAB function fmincon available in MATLAB Optimization Toolbox.
The Monte-Carlo simulations have been performed using MATLAB’s default random number generator
with the seed set to 1. The Gaussian quadrature was calculated using a MATLAB’s function from John
Burkardt’s website.16 For a unit normal distribution truncated at five standard deviations, the Gaussian
quadrature with 10 nodes has nodes εn = {±4.4576,±3.3999,±2.3838,±1.4132,±0.4684} and weights
πn =

{
1.9834×10−5,1.2876×10−3,2.3048×10−2,0.14029,0.33536

}
.

B Small Sample Properties

In this section, we assess using Monte Carlo experiments the small sample properties of the simulated
Unconditional Maximum Likelihood estimator (UML) we developed, and compare them to those of the
Conditional Maximum Likelihood estimator (CML) proposed in Cafiero et al. (2015). From equation (20),
the conditional log-likelihood without trend is obtained by removing the terms corresponding to the
marginal likelihood:

logLC (
θ ;Pobs

1:T
)
=−T −1

2
log2π− (T −1) log [Φ(5)−Φ(−5)]

+
T

∑
t=2

log
∣∣∣P−1′ (Pobs

t
)∣∣∣− T

∑
t=2

(
1|εt |≤5 · ε2

t +1|εt |>5 ·∞
)/

2. (21)

Following Michaelides and Ng (2000) and Cafiero et al. (2015), we conduct four Monte Carlo
experiments varying the parameterization and the length of the samples. The first set of parameters are
a = 1, b =−1, and k = 0.02, which implies a storage cost of 2% of the mean price and, for supply shocks
with a coefficient of variation of 5%, a demand elasticity of −0.05 in the range of the best estimates
obtained by Roberts and Schlenker (2013) on a caloric aggregate of major crops, but slightly higher in
absolute value than our estimated elasticities. The second parameterization only differs by the value of b,
now equal to −2. This rotation of the slope of the demand function around its mean halves the demand
elasticity making this parameterization more favorable to storage, and closer to the values found in the
article. For each set of parameters, we solve for the equilibrium price function on a grid of 1,000 points,
and obtain 3,000 prices series of length T = 50 and T = 100 from the asymptotic distribution. The price
series are obtained by the simulation of 3,000 trajectories starting from the steady-state availability and
discarding the first 50 periods as burn-in periods.

The numerical methods follow what was described previously, but differ on two aspects. Firstly,
to prevent the availability corresponding to the cutoff price to be below the lower bound of the grid of

15http://www.mat.uc.pt/~lnv
16http://people.sc.fsu.edu/~jburkardt/m_src/truncated_normal_rule/truncated_normal_rule.html
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interpolation points, the lower bound is changed from being −2 to being −5, the minimum availability.
Secondly, since the log-likelihood optimization behaves better on simulated samples, we use a faster
optimization algorithm: the generalized pattern search algorithm implemented by the MATLAB function
patternsearch available in MATLAB Global Optimization Toolbox. The optimization starts from
initial values randomly drawn in the range between 80% and 120% of the true values. If the optimization
solver fails to converge for one of the two estimators, we discard the corresponding samples for both
estimators. The results of valid estimates obtained on common samples are given in table A1 and A2.

Table A1: Comparison of Monte Carlo Experiment Results with Parameterization a = 1, b =−1, and
k = 0.02

UML CML

a b k a b k

T = 50
Mean 0.9930 −0.9720 0.0193 0.9932 −0.9745 0.0194
Standard deviation 0.0650 0.1297 0.0059 0.0668 0.1344 0.0058
Bias −0.0070 0.0280 −0.0007 −0.0068 0.0255 −0.0006

(0.70%) (2.80%) (3.40%) (0.68%) (2.55%) (3.14%)
RMSE 0.0654 0.1326 0.0059 0.0671 0.1368 0.0058

(6.54%) (13.26%) (29.67%) (6.71%) (13.68%) (29.24%)
T = 100
Mean 0.9951 −0.9854 0.0196 0.9944 −0.9875 0.0194
Standard deviation 0.0510 0.1066 0.0053 0.0516 0.1070 0.0052
Bias −0.0049 0.0146 −0.0004 −0.0056 0.0125 −0.0006

(0.49%) (1.46%) (2.17%) (0.56%) (1.25%) (2.75%)
RMSE 0.0512 0.1076 0.0053 0.0519 0.1077 0.0053

(5.12%) (10.76%) (26.70%) (5.19%) (10.77%) (26.26%)

Notes: The price samples for which one estimator does not converge are discarded. For T = 50, the total number of valid
replications is 2,737 for UML and 2,733 for CML. For T = 100, it is 2,841 for UML and 2,846 for CML. The table reports the
2,593 and 2,764 valid estimates obtained on common samples for the short and long samples.

The results of the Monte Carlo experiments are similar to those obtained for the CML in Cafiero et al.
(2015). They show that the two maximum likelihood estimators yield precise estimates of the parameters
of the model, especially for a and b. The storage cost, k, is less precisely estimated with Root Mean
Square Errors (RMSE) always above 26%. For all parameters, the bias is small, most of the RMSE
coming from the standard deviation of the estimations.

For all parameterizations, the estimators perform better when the sample length increases. For the
UML, a doubling of the sample length from 50 to 100 observations reduces the RMSE by 17% for both
parameterizations. The CML benefits slightly more than the UML from an increase in the sample size.
Indeed, they have similar RMSE for the long samples, but the UML performs better on the short samples.
Regarding the influence of the parameterization, we observe that the parameterization more favorable to
storage yields less precise estimates as all the RMSE of table A2 are higher than in table A1.
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Table A2: Comparison of Monte Carlo Experiment Results with Parameterization a = 1, b =−2, and
k = 0.02

UML CML

a b k a b k

T = 50
Mean 0.9793 −1.9639 0.0194 0.9772 −1.9695 0.0193
Standard deviation 0.1280 0.3202 0.0085 0.1351 0.3250 0.0085
Bias −0.0207 0.0361 −0.0006 −0.0228 0.0305 −0.0007

(2.07%) (1.80%) (3.14%) (2.28%) (1.52%) (3.69%)
RMSE 0.1296 0.3222 0.0085 0.1370 0.3265 0.0085

(12.96%) (16.11%) (42.51%) (13.70%) (16.32%) (42.45%)
T = 100
Mean 0.9848 −1.9838 0.0195 0.9825 −1.9860 0.0194
Standard deviation 0.1055 0.2592 0.0074 0.1090 0.2611 0.0076
Bias −0.0152 0.0162 −0.0005 −0.0175 0.0140 −0.0006

(1.52%) (0.81%) (2.56%) (1.75%) (0.70%) (3.14%)
RMSE 0.1065 0.2597 0.0074 0.1104 0.2615 0.0076

(10.65%) (12.99%) (36.94%) (11.04%) (13.08%) (38.02%)

Notes: The price samples for which one estimator does not converge are discarded. For T = 50, the total number of valid
replications is 2,820 for UML and 2,767 for CML. For T = 100, it is 2,899 for UML and 2,890 for CML. The table reports the
2,674 and 2,839 valid estimates obtained on common samples for the short and long samples.
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C Production variation

Table A3: Production variation, 1961–2011

Commodity Production CV (%) Commodity Production CV (%)

Banana 3.67 Palm oil 4.65
Cocoa 7.13 Rice 2.75
Coffee 7.68 Sugar 3.65
Copper 4.46 Tea 2.07
Cotton 7.20 Tin 5.52
Jute 11.35 Wheat 4.34
Maize 5.84

Notes: The coefficients of variation (CV) are obtained by calculating the standard deviation of the detrended logarithm of
observed production, modeling the trend using a restricted cubic splines with five knots.
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D Parameters estimates

Table A4: Parameter estimates with 3-knot spline trend

Commodity g1 g2 a b k logL # Stockouts

Banana −0.3323 −1.2359 1.3237 −1.6729 0 170.6770 0
(0.2804) (0.2011) (0.2013) (0.4397) –

Cocoa −1.5599 0.7076 0.3679 −1.7978 0.0002 215.6308 0
(0.8803) (0.3317) (0.1595) (0.9285) (0.0008)

Coffee 0.0925 −0.6813 0.2522 −0.5265 0.0036 194.9321 1
(0.3314) (0.1557) (0.0455) (0.1072) (0.0025)

Copper −0.4176 −0.2464 0.7348 −1.1835 0.0073 122.1660 0
(0.1943) (0.1424) (0.0789) (0.1589) (0.0051)

Cotton −0.6422 −2.0878 1.5367 −3.7632 0.0053 123.0208 0
(0.8240) (0.3217) (0.4016) (1.6051) (0.0065)

Jute −0.3974 −0.9164 0.6917 −0.7573 0.0163 102.1980 4
(0.0756) (0.0554) (0.0481) (0.0401) (0.0062)

Maize −0.6588 −0.8850 0.9504 −1.5377 0.0128 84.9322 3
(0.1101) (0.0815) (0.0816) (0.1432) (0.0075)

Palm oil −1.7887 −1.2443 1.0411 −1.7009 0.0146 119.2428 1
(0.1181) (0.0539) (0.0981) (0.1865) (0.0091)

Rice −1.5405 −1.4251 1.2128 −2.0786 0.0037 127.1550 1
(0.3035) (0.1417) (0.1914) (0.3684) (0.0066)

Sugar −1.2627 −0.2394 0.9701 −1.8482 0.0235 60.7431 8
(0.1028) (0.1652) (0.0809) (0.1738) (0.0098)

Tea −0.9290 −1.1775 1.1089 −1.6789 0.0105 144.1925 0
(0.3585) (0.1357) (0.2085) (0.4149) (0.0053)

Tin 1.7957 −0.7677 0.1940 −0.7567 0 209.3322 0
(0.4707) (0.2843) (0.0244) (0.1185) –

Wheat −1.2473 −0.8441 1.2069 −1.5449 0.0143 104.0772 1
(0.1482) (0.1517) (0.1069) (0.2021) (0.0096)

Note: Asymptotic standard errors in parenthesis.

28



Table A5: Parameter estimates with 4-knot spline trend

Commodity g1 g2 g3 a b k logL # Stockouts

Banana −0.5940 −0.2663 −1.5903 1.2033 −1.5061 0 171.7633 0
(0.2995) (0.3033) (0.2712) (0.1735) (0.3602) –

Cocoa 0.2862 −2.6193 0.3417 0.4498 −1.1874 0.0024 219.7236 0
(0.2857) (0.5337) (0.4282) (0.0981) (0.2765) (0.0028)

Coffee 0.1199 0.0281 −0.7565 0.2339 −0.4885 0.0033 194.9185 2
(0.1792) (0.3230) (0.1351) (0.0495) (0.0898) (0.0024)

Copper 0.6214 −0.8595 −0.2444 0.7416 −1.7526 0.0005 123.6516 4
(0.3452) (0.3155) (0.1968) (0.1155) (0.3542) (0.0044)

Cotton −0.2545 −1.1035 −2.2689 1.4300 −3.5214 0.0049 122.8690 0
(0.7621) (0.8597) (0.4857) (0.5264) (2.0232) (0.0069)

Jute −0.0613 −0.6035 −0.9908 0.6967 −0.7614 0.0163 102.1845 8
(0.1039) (0.1805) (0.0710) (0.0797) (0.0715) (0.0066)

Maize 0.0815 −1.1899 −1.1229 0.9358 −0.8819 0.0304 88.8597 12
(0.1073) (0.0887) (0.0576) (0.0481) (0.0508) (0.0068)

Palm oil −0.9208 −1.6398 −1.5053 0.9971 −1.6352 0.0142 119.6359 1
(0.1402) (0.3924) (0.1190) (0.1744) (0.3267) (0.0095)

Rice −0.8285 −1.7697 −1.6808 1.2815 −2.2062 0.0042 127.1070 1
(0.2131) (0.4977) (0.1837) (0.3139) (0.5310) (0.0070)

Sugar −0.6992 −1.3979 −0.3698 1.1136 −2.0999 0.0262 60.8484 16
(0.1369) (0.2635) (0.2479) (0.1329) (0.2176) (0.0106)

Tea −1.4922 −0.4250 −1.8818 1.1959 −1.7916 0.0107 145.6865 0
(0.3475) (0.4818) (0.2257) (0.2308) (0.4785) (0.0051)

Tin 1.7411 1.1081 −0.2441 0.1517 −0.5043 0 210.3823 6
(0.5157) (0.2943) (0.1589) (0.0113) (0.0414) –

Wheat −0.1494 −1.9057 −0.9026 1.3447 −2.3618 0 105.8230 0
(0.1744) (0.3087) (0.1902) (0.1606) (0.3405) –

Note: Asymptotic standard errors in parenthesis.
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E Figures of price trends
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Figure A1: Price trends
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