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Abstract

The major contributions of this paper are twofold. First, it introduces exponen-
tial environmental Luenberger productivity indicator and Malmquist-Luenberger pro-
ductivity index constructed through an exponential distance function. Thereafter, an
exponential version of the environmental Luenberger-Hicks-Moorsteen productivity in-
dicator is proposed. Such a specification allows to overcome the special issue of in-
feasabilities. Second, looking from a dynamical viewpoint, we propose an exponential
generalized dynamical distance function. This new efficiency measure shows the degree
of efficiency of an observation, taking into consideration its technical efficiency and/or
technological variation adjustment path. A sample of 11 representative French airports
is considered over the period 2008-2011, in order to implement these new exponential
environmental productivity index and indicators.
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1 Introduction

Two approaches of productivity measurement are often identified in the literature. On the

one hand, following the initial work of Solow (1957), productivity growth in continuous time

can be detected based on derivative of production function. On the other hand, produc-

tivity indices or indicators1 allow to define productivity in consecutive time periods. Caves

et al. (1982) introduced a theoretical analysis of the discrete time Malmquist (1953) input,

output and productivity indices using distance functions as general representations of tech-

nology. Caves, Christensen and Diewert indices have been implemented in Pittman (1983)

and Nishimizu and Page (1982), which first proposed to decompose productivity change into

technical change and technical efficiency variation. Using Shephard (1970) distance function

(i.e. the inverse of Farrell (1957) measure of technical efficiency), Färe et al. (1995) pro-

posed to compute a Malmquist index, integrating the two-part Nishimizu and Page (1982)

decomposition, based on nonparametric linear programming method.

Thereafter, Bjurek (1996) defines an alternative Hicks-Moorsteen index. This index cor-

responds to the ratio of a Malmquist output quantity index over a Malmquist input quantity

index. Turning to the difference-based productivity measure, Chambers (2002) introduces a

Luenberger productivity indicator. The latter is constructed as a difference-based index of

directional distance functions, a generalisation of existing distance functions that accounts for

both input contractions and output improvements (Briec, 1997). In the same vein, Briec and

Kerstens (2004)2 proposed a new difference-based variation on the Hicks-Moorsteen produc-

tivity index. The proposed Luenberger-Hicks-Moorsteen indicator is defined as a difference

of Luenberger output quantity and Luenberger input quantity indicators, a generalisation of

the Malmquist output and input quantity indices (Chambers et al., 1994).

1Throughout this paper, “indicators” are mentioned to define productivity measures based on differences
and “indices” refer to ratio-based productivity measures. Note that, comparisons between ratio and difference
approaches to index number theory from both a test and an economic perspective can be found in Chambers
(1998, 2002) and Diewert (1998), among others.

2Chambers (1998) defines also an innovative productivity indicator using a special case of the shortage or
directional distance function known as the translation function.
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The above methods allow to define traditional productivity analysis (See for instance

Boussemart et al., 2003; Färe et al., 1994; Kerstens and Van de Woestyne, 2014). Such meth-

ods do not take into consideration the impacts of environmental regulation on productivity

change. More precisely, they appear limited when dealing with desirable and undesirable out-

puts to evaluate environmental impacts on technical change and technical efficiency variation.

One alternative to the classical productivity analysis consists to use modified environmental

productivity indicators and indices. Since the initial work of Pittman (1983), a growing lit-

erature about environmental productivity indicators and indices has been proposed (See for

instance Tyteca, 1996; Aiken and Pasurka, 2003).

In line with the difference-based productivity indicators, Azad and Ancev (2014) and

Picazo-Tadeo et al. (2014) proposed an environmental Luenberger productivity indicator.

This method, based on the conceptual framework of the Luenberger productivity indicator,

considers an output separation (desirable and undesirable) to assess productivity growth.

Azad and Ancev (2014) considered an output (desirable and undesirable) oriented direc-

tional distance function (DDF) approach, while Picazo-Tadeo et al. (2014) used a subvector

undesirable output oriented DDF. In the spirit of the ratio-based productivity index, Chung

et al. (1997) introduced a Malmquist-Luenberger index. These authors used an adjusted

environmental DDF within the traditional output oriented Malmquist index in order to show

combined productive and environmental productivity changes. Dong-huyn Oh (2010) intro-

duced a global Malmquist-Luenberger productivity index in order to overcome the special

issue of infeasibilities. In tradition of the Hicks-Moorsteen productivity index, Färe et al.

(2004) considered an environmental performance index defined as a ratio of Malmquist good

output quantity index over Malmquist bad output quantity index. Recently, Abad (2015)

proposed an innovative environmental generalised Luenberger-Hicks-Moorsteen productivity

indicator and a new environmental generalised Hicks-Moorsteen productivity index allowing

to overcome the issue of infeasabilities occuring when computing Malmquist-Luenberger and

Luenberger productivity index and indicator.
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In the above methods, environmental performance is evaluated using Data Envelopment

Analysis (DEA) nonparametric linear programming models. Traditional environmental per-

formance DEA models have mostly used static frameworks. Such approach allows to define

combined productive and environmental performance for one period. Remark that some

studies in nonparametric production analysis consider dynamic aspects (Fallah-Fini et al.,

2014). In this paper, we propose to use both static and dynamical approaches. To this end,

we consider a static and a dynamic exponential environmental distance function. We con-

struct innovative exponential environmental productivity index and indicators based on the

exponential distance function (Briec and Ravelojaona, 2015) allowing reduction of the input

set and expansion of the output set simultaneously under a multiplicative technology which

can take into account increasing marginal product. Looking from a dynamical viewpoint, we

propose an exponential generalized dynamical distance function. This new efficiency measure

shows the degree of efficiency of an observation, taking into consideration its technical effi-

ciency and/or technological variation adjustment path. In addition, an ”implicit” Törnqvist

Total Factor Productivity is proposed through the dynamical exponential distance function

following Törnqvist (1936). This index is supposed to be implicit due to the dissimilarity

between the market prices weights and the weights proposed.

This note unfolds as follows. Technology and exponential distance function are defined

in the next section. Section 3 introduces exponential environmental productivity index and

indicators based on primal and dual viewpoint. Section 4 presents the exponential envi-

ronmental distance function in both consecutive two time periods and dynamic frameworks.

Moreover, dynamical deviation, exponential environmental productivity index and indica-

tors in dynamical context and an implicit Törnqvist Total Factor Productivity is defined

in this section. A sample of 11 representative French airports is considered over the period

2008-2011, in order to implement these new exponential environmental productivity index

and indicators in section 5. Finally, Section 6 concludes, discusses limitations and, offers
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directions for future research.

2 Technology and Exponential Distance Function

2.1 Technology: Definition and Properties

The production technology transforms input vectors xt ∈ Rn
+ into output vectors yt =

(ytd, y
t
b) ∈ Rm

+ , with m = md + mb, at the period t. Where, ytd is the desirable output and

ytb is the undesirable output in environmental joint-production. The input correspondence,

L : Rmd+mb
+ −→ 2R

n
+, is defined as:

L(yt) =
{

xt ∈ R
n
+ : yt can be produced by xt

}

.

In this paper, we focus on the output correspondence, P : Rn
+ −→ 2R

md+mb
+ , defined as follows:

P (xt) =
{

yt ∈ R
md+mb
+ : xt can produce yt

}

.

L and P characterize the production technology and the graph technology T t can be

described by:

T t =
{

(xt, yt) ∈ R
n+md+mb
+ : xt ∈ L(yt) ∨ yt ∈ P (xt)

}

.

We assume that the production set, P (xt), satisfies the following regularity properties

(see Hackman, 2008; Jacobsen, 1970; McFadden, 1978):

P1: P (0) = {0} and 0 ∈ P (xt) for all xt ∈ Rn
+.

P2: P (xt) is bounded above for all xt ∈ Rn
+.

P3: P (xt) is closed for all xt ∈ Rn
+.

P4 : If u ≥ x ⇒ P (x) ⊇ P (u).
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Remark that P1 postulates that there is no free lunch and that the null output can always

be produced. Furthermore, P2 and P3 consisder that P (x) is compact. Axiom P4 imposes

the more traditional assumption of strong (or free) disposal of inputs.

Abad and Briec (2016) introduce an innovative B-disposal assumption, that is a kind of

limited strong disposability. Based on this disposability assumption, these authors aim to

model any Pollution-generating Technologies (PgT) in production processes compatible with

a minimal set of assumptions. Authors provide an innovative axiomatic characterization of

the incorrect modeling of variable returns-to-scale (VRS) assumption in traditional Shepard’s

weakly disposable technology (Kuosmanen, 2005; Leleu, 2013). Furthermore, considering a

generalization of the B-disposability assumption on the technology, authors retrieve the by-

production technology proposed by Murty et al. (2012). Let us postulate that the outputs

satisfy the B-disposal assumption. We can define this assumption as follows:

Definition 2.1.1 Let P be an output correspondence satisfying P1-P4. For all yt ∈ Rm
+ ,

the output set P (xt) satisfies the B-disposal assumption if for all sets of output vectors
{

yt
J
}

J∈{∅,B}
⊂ P (xt), yt ≤J yt

J
for any J ∈ {∅, B} implies that yt ∈ P (xt).

Let B ⊂ [m], indexing the bad outputs of the technology. We consider the following

symbol:

y ≥B v ⇐⇒

⎧

⎪

⎨

⎪

⎩

yj ≤ vj if j ∈ B

yj ≥ vj else
(2.1)

Remark that if B = ∅, then we retrieve the standard vector inequality. In this case, the

B-disposal assumption reduces to the standard free disposability assumption.
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2.2 Multiplicative Technology and Distance Function

2.2.1 Multiplicative Technology

The Data Envelopment Analysis (DEA) method estimation use the piecewise linear technol-

ogy to set the efficiency frontier. However, this classic technology does not allow for increasing

marginal products. Hence, following Banker and Maindiratta (1986) and Briec and Ravelo-

jaona (2015), we introduce the multiplicative technology which is piecewise log-linear through

a logarithmic transformation and takes into account increasing marginal product. This tech-

nology satisfies a ”geometric convexity” such that, for all (wt
1, w

t
2) ∈ T t and all µ1, µ2 ≥ 0

with µ1 + µ2 = 1, (wt
1)

µ1 ⊙ (wt
2)

µ2 ∈ T t.

Definition 2.2.1 Consider J firms at the time period t,

T t = {(xt, yt) ∈ R
n+m
+ :xt ≥

∏

k∈J

(xt
k)
θk , yt ≤

∏

k∈J

(ytk)
θk , xt ≥

∏

k∈J

(xt
k)
νk ,

yt ≤B
∏

k∈J

(ytk)
νk , ν ≥ 0, θ ≥ 0}

is called the multiplicative B-disposable non-parametric technology.

The multiplicative technology is non-linear such that to ease the estimation by a linear

programming, a logarithmic transformation is applied.

Definition 2.2.2 Consider J firms at the time period t. For T t
++ = T t ∩ R

n+m
++ :

T t
ln ={(ln(xt), ln(yt)) : (xt, yt) ∈ T t

++}

T t
ln ={(xt, yt) ∈ R

n+m
++ : ln(xt) ≥

∑

k∈J

θk ln(x
t
k), ln(y

t) ≤
∑

k∈J

θk ln(y
t
k),

ln(xt) ≥
∑

k∈J

νk ln(x
t
k), ln(y

t) ≤B
∑

k∈J

νk ln(y
t
k), ν ≥ 0, θ ≥ 0}

is called the Neperian technology.
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2.2.2 Exponential Distance Function

The deviation of the actual production set from the efficient production set means efficiency

growth possibilities. Distance functions can measure this deviation length with respect to

the technology. Instead of the radial measure of technical efficiency proposed in Banker and

Maindiratta (1986), the exponential distance function introduced by Briec and Ravelojaona

(2015) is applied. This distance function allows to reduce the input set and to expand the

output set simultaneously3 in a pre-assigned direction. This definition is closely related to

the Directional distance function first proposed by Luenberger (1992) and by Chambers et

al.(1996). Indeed, under a neperian technology, we retrieve the directional distance function

allowing increasing marginal product. In addition, the exponential distance function is invari-

ant with respect to the units measurement. Furthermore, it is connected to the Generalized

multiplicative distance function presented by Mehdiloozad et al.(2014). For all δt ∈ R and

(αt, βt) ∈ [0, 1]n× [0, 1]m the exponential distance function, Dt
exp : Rn+m

+ −→ R∪{−∞,+∞},

is defined as follows:

Dt
exp(x

t, yt;αt, βt) = sup
{

δt : Φδ
t

αt,βt(xt, yt) ∈ T t
}

.

Where the linear map Φδ
t

αt,βt : Rn+m
+ −→ R

n+m
+ is defined for some δt ∈ R as follows:

Φδ
t

αt,βt(xt, yt) = (e−δ
tAt

xt, eδ
tBt

yt).

In the above definition of Φδ
t

αt,βt(xt, yt), At and Bt are respectively two diagonal matrices such

that At = diag(αt) and Bt = diag(βt).

Following Briec and Ravelojaona (2015), we assume that this distance function satisfies

the properties quoted below:

D1: Dt
exp(x

t, yt;αt, βt) ≥ 0 ⇔ (xt, yt) ∈ T t.

3Remark that we can consider input or output oriented exponential distance function.
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D2: For (ut, vt), (xt, yt) ∈ T t, if (−ut, vt) ≥ (−xt, yt) thenDt
exp(x

t, yt;αt, βt) ≤ Dt
exp(u

t, vt;αt, βt).

D3: Dt
exp(Φ

θt

αt,βt(xt, yt);αt, βt) = Dt
exp(x

t, yt;αt, βt)− θt.

D4: Dt
exp(x

t, yt;αt, βt) = 0 ⇔ (xt, yt) ∈ ∂αt,βt(T t), the efficient technology subset.

D5: Dt
exp(x

t, yt;αt, βt) is commensurable.

D1 asserts that the exponential distance function represents the technology. D2 postu-

lates the monotonicity of the function. D3 states that the exponential distance function is

translation homothetic. D4 identifies the efficient technology subset and D5 claims that the

function satisfies the commensurability condition stated by Russell (1988).

Through a logarithmic transformation, this exponential distance function is analogous to

the directional distance function under a neperian technology T t
ln, such that :

ln(Φδ
t

αt,βt(xt, yt)) = ln(e−δ
tαt

xt, eδ
tβt

yt) = (ln(xt)− δtαt, ln(yt) + δtβt).

Let the exponential distance function, Dt
exp : Rn+m

+ −→ R ∪ {−∞,+∞}, be the map

defined by:

Dt
exp(x

t, yt;αt, βt) = sup
{

δt : ln(Φδ
t

αt,βt(xt, yt)) ∈ T t
ln

}

= sup
{

δt : (ln(xt)− δtαt, ln(yt) + δtβt) ∈ T t
ln

}

= sup
{

δt : (ut − δtαt, vt + δtβt) ∈ T t
ln

}

= Dt
ln(u

t, vt;αt, βt).

This neperian distance function is assumed to satisfy the usual axioms of directional

distance function defined by Chambers et al. (1998).

Following Chung et al. (1997), we introduce the environmental exponential distance func-

tion which can be applied to environmental issues such that both good and bad outputs are
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simultaneously increased and reduced. To do so, we present the environmental exponential

distance function output-oriented (ED) with α = 0 and β = (βt
d, β

t
b) ∈ [0, 1]. This function,

EDexpO : Rmd+mb
+ −→ R ∪ {−∞,+∞}, is defined as below:

EDt
expO(xt, ytd, y

t
b; 0, β

t
d, β

t
b) = sup

{

δt : (e−δ
tβt

bytb, e
δtβt

dytd) ∈ P (xt)
}

. (2.2)

As shown above, the ED can be expressed as follows:

EDt
expO(xt, ytd, y

t
b; 0, β

t
d, β

t
b) = sup

{

δt : ln(e−δ
tβt

bytb, e
δtβt

dytd) ∈ P t
ln

}

= sup
{

δt : (ln(ytb)− δtβt
b, ln(y

t
d) + δtβt

d) ∈ P t
ln

}

= sup
{

δt : (vtb − δtβt
b, v

t
d + δtβt

d) ∈ P t
ln

}

= EDt
lnO(u

t, vtb, v
t
d; 0, β

t
b, β

t
d).

In the above equations P t
ln =

{

(ln(ytb), ln(y
t
d)) : (y

t
b, y

t
d) ∈ P t

++

}

, with P t
++ = P t∩R

mb+md
++ .

3 Exponential Environmental Index and Indicators

3.1 Exponential Malmquist-Luenberger Productivity Index

Productivity indices permit to estimate the performance evolution of a firm between two pe-

riods. Several environmental productivity indices were introduced these last decades (Chung

et al., 1997; Färe et al., 2004). Using the output-oriented Malmquist productivity index,

Chung et al. (1997) developed the Malmquist-Luenberger (ML) productivity index. These

authors use the fact that the output distance function is a special case of the output-oriented

directional distance function (Chambers et al., 1996). From this result, they introduce the

latter within the standard output-oriented Malmquist productivity index 4. The Exponential

4In the tradition of the Hicks-Moorsteen productivity index, Färe et al. (2004) introduce an Environmental
Performance Index (EPI) defined as the ratio of a Malmquist good output quantity index (MG) over a
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Malmquist-Luenberger (EML) productivity index is defined as follows:

EML(xt, xt+1, ytd, y
t
b, y

t+1
d , yt+1

b ; 0, γt, γt+1)

=

[

1+EDt
expO

(xt,ytd,y
t
b;γ

t)

1+EDt
expO

(xt+1,yt+1
d ,yt+1

b ;γt+1)
×

1+EDt+1

expO
(xt,ytd,y

t
b;γ

t)

1+EDt+1

expO
(xt+1,yt+1

d ,yt+1
b ;γt+1)

]1/2

.
(3.1)

Through a logarithmic transformation of the ED defined above, we have:

MLln(ut, ut+1, vtd, v
t
b, v

t+1
d , vt+1

b ; γt, γt+1)

=

[

1+EDt
lnO

(ut,vtd,v
t
b;γ

t)

1+EDt
lnO

(ut+1,vt+1
d ,vt+1

b ;γt+1)
×

1+EDt+1

lnO
(ut,vtd,v

t
b;γ

t)

1+EDt+1

lnO
(ut+1,vt+1

d ,vt+1
b ;γt+1)

]1/2

,
(3.2)

where γt = (0, βt
d, β

t
b) and such that:

EDt
expO(xt+1, yt+1

d , yt+1
b ; γt+1) = sup

{

δt+1 : (e−δ
t+1βt+1

b yt+1
b , eδ

t+1βt+1
d yt+1

d ) ∈ P (xt)
}

.

Remark that when γt =
(

0, ln(ytd),− ln(ytb)
)

the EML corresponds to the exponential

version of the Malmquist output index. As in the case of the Malmquist output index,

ecological productivity improvement, respectively deterioration, takes place when values of

the EML productivity index is above, respectively below, unity. Furthermore, the EML

can be decomposed in two components: efficiency variation (EMLEV) and technical change

(EMLTC).

EMLEV (xt, xt+1, ytd, y
t
b, y

t+1
d , yt+1

b ; 0, γt, γt+ 1) =
1 + EDt

expO(xt, ytd, y
t
b; γt)

1 + EDt+1
expO(xt+1, yt+1

d , yt+1
b ; γt+1)

(3.3)

and

Malmquist bad output quantity index (MB) at base period t.
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EMLTC(xt, xt+1, ytd, y
t
b, y

t+1
d , yt+1

b ; 0, γt, γt+ 1) =
[

1 + EDt+1
expO(xt, ytd, y

t
b; γt)

1 + EDt
expO(xt, ytd, y

t
b; γt)

×
1 + EDt+1

expO(xt+1, yt+1
d , yt+1

b ; γt+1)

1 + EDt
expO(xt+1, yt+1

d , yt+1
b ; γt+1)

]1/2

. (3.4)

3.2 Exponential Environmental Luenberger Productivity Indica-

tor

Let us consider the Luenberger productivity indicator applied to the environmental area.

Following Azad and Ancev (2014) and Abad (2015), we propose to use the Environmental

Luenberger productivity indicator based upon the ED. Thus, the exponential environmental

Luenberger (EEL) productivity indicator is described as following:

EEL(xt, xt+1, ytd, y
t
b, y

t+1
d , yt+1

b ; γt, γt+1) (3.5)

=
1

2

[

(

EDt
expO(xt, ytd, y

t
b; 0, β

t
d, β

t
b)− EDt

expO(xt+1, yt+1
d , yt+1

b ; 0, βt+1
d , βt+1

b )
)

+
(

EDt+1
expO(x

t, ytd, y
t
b; 0, β

t
d, β

t
b)− EDt+1

expO(x
t+1, yt+1

d , yt+1
b ; 0, βt+1

d , βt+1
b )

)

]

.

Through a logarithmic transformation of the ED defined above, we have:

ELln(u
t, ut+1, vtd, v

t
b, y

t+1
d , yt+1

b ; γt, γt+1) (3.6)

=
1

2

[

(

EDt
lnO(u

t, vtd, v
t
b; 0, β

t
d, β

t
b)− EDt

lnO(u
t+1, vt+1

d , vt+1
b ; 0, βt+1

d , βt+1
b )

)

+
(

EDt+1
lnO

(ut, vtd, v
t
b; 0, β

t
d, β

t
b)− EDt+1

lnO
(ut+1, vt+1

d , vt+1
b ; 0, βt+1

d , βt+1
b )

)

]

,

where γt = (0, βt
d, β

t
b) and such that:
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EDt
expO(xt+1, yt+1

d , yt+1
b ; γt+1) = sup

{

δt+1 : (e−δ
t+1βt+1

b yt+1
b , eδ

t+1βt+1
d yt+1

d ) ∈ P (xt)
}

.

The exponential environmental Luenberger productivity indicator can be decomposed as

follows (Azad and Ancev, 2014):

EEL(xt, xt+1, ytd, y
t
b, y

t+1
d , yt+1

b ; γt, γt+1) (3.7)

=
[

EDt
expO(xt, ytd, y

t
b; 0, β

t
d, β

t
b)−EDt+1

expO(x
t+1, yt+1

d , yt+1
b ; 0, βt+1

d , βt+1
b )

]

+
1

2

[

(

EDt+1
expO(x

t+1, yt+1
d , yt+1

b ; 0, βt+1
d , βt+1

b )− EDt
expO(xt+1, yt+1

d , yt+1
b ; 0, βt+1

d , βt+1
b )

)

+
(

EDt+1
expO(x

t, ytd, y
t
b; 0, β

t
d, β

t
b)− EDt

expO(xt, ytd, y
t
b; 0, β

t
d, β

t
b)
)

]

.

Ratio in the first bracket depicts efficiency variation among base years t and t+ 1. Term

in the second bracket shows technological change among base years t and t+ 1.

3.3 Exponential Environmental Luenberger-Hicks-Moorsteen Pro-

ductivity Indicator

Abad (2015) introduces both environmental generalised Hicks-Moorsteen and Luenberger-

Hicks-Moorsteen productivity index and indicator. These innovative ratio-based and difference-

based productivity measures focus on desirable and undesirable quality attributes. Let us

consider an exponential version of the environmental generalised Luenberger-Hicks-Moorsteen

productivity indicator. Most precisely, we consider an Exponential version of the subvector

Undesirable Component Environmental Generalised productivity indicator (EUCEG). Such

a representation solely focus on desirable and undesirable outputs, allowing to overcome the

special issue of infeasabilities (Briec and Kerstens, 2009) in the computation of Malmquist-

Luenberger productivity index and Environmental Luenberger productivity indicator (Figure
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1.).

In the same vein of Luenberger-Hicks-Moorsteen indicator, the EUCEG is defined as the

difference between an Exponential Environmental Luenberger Output (EELOt) quantity

indicator and a subvector undesirable component Exponential Environmental Luenberger

Input (EELI t) quantity indicator:

EUCEGt(xt, ytd, y
t
b, y

t+1
d , yt+1

b ; ξt,ψt, ξt+1ψt+1)

= EELOt(xt, ytd, y
t
b, y

t+1
d ; ξt, ξt+1)− EELI t(xt, ytd, y

t
b, y

t+1
b ;ψt,ψt+1),

(3.8)

where:

EELOt(xt, ytd, y
t
b, y

t+1
d ; ξt, ξt+1)

= EDt
expO(xt, ytd, y

t
b; 0, β

t
d, 0)− EDt

expO(xt, yt+1
d , ytb; 0, β

t+1
d , 0)

and

EELI t(xt, ytd, y
t
b, y

t+1
b ;ψt,ψt+1)

= EDt
expO(xt, ytd, y

t+1
b ; 0, 0, βt+1

b )− EDt
expO(xt, ytd, y

t
b; 0, 0, β

t
b).

Also a base period t + 1 subvector Exponential Undesirable Component Environmental

Generalised productivity indicator (EUCEGt+1) can be similarly defined as follows:

EUCEGt+1(xt, ytd, y
t
b, y

t+1
d , yt+1

b ; ξt, ξt+1,ψt,ψt+1)

= EELOt+1(xt+1, ytd, y
t+1
b , yt+1

d ; ξt, ξt+1)− EELI t+1(xt+1, yt+1
d , ytb, y

t+1
b ;ψt,ψt+1),

(3.9)

where:

EELOt+1(xt+1, ytd, y
t+1
b , yt+1

d ; ξt, ξt+1)

= EDt+1
expO(xt+1, ytd, y

t+1
b ; 0, βt

d, 0)− EDt+1
expO(xt+1, yt+1

b , yt+1
d ; 0, βt+1

d , 0)

and:
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Figure 1: EUCEG and the issue of infeasibilities

EELI t+1(xt+1, yt+1
d , ytb, y

t+1
b ;ψt,ψt+1)

= EDt+1
expO(xt+1, yt+1

d , yt+1
b ; 0, 0, βt+1

b )− EDt+1
expO(xt+1, yt+1

d , ytb; 0, 0, β
t
b).

An arithmetic mean of these two base periods exponential environmental generalized

Luenberger-Hicks-Moorsteen indicators is:

EUCEGt,t+1(xt, ytd, y
t
b, y

t+1
d , yt+1

b ; ξt, ξt+1,ψt,ψt+1)

= 1
2 [EUCEGt(xt, ytd, y

t
b, y

t+1
d , yt+1

b ; ξt, ξt+1,ψt,ψt+1)

+EUCEGt+1(xt, ytd, y
t
b, y

t+1
d , yt+1

b ; ξt, ξt+1,ψt,ψt+1)].

(3.10)

The EUCEG productivity indicator shows combined desirable and undesirable outputs

productivity improvement, respectively decline, when it takes positive, respectively nega-

tive, values. The productivity change in desirable outputs is greater than the changes in

productivity associated with the undesirable outputs. The innovative EUCEG productivity

indicator takes the form of an additive complete Total Factor Productivity (TFP) measure.

Following O’Donnell (2010, 2012, 2014, 2016), the EUCEG could be decomposed within finer

measures of efficiency in terms of aggregate quantities.
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3.4 Exponential Environmental Productivity Indicators and Du-

ality Theory

To study these new multiplicative environmental productivity index and indicators from

a dual standpoint, we introduce a Cobb-Douglas revenue function, RCD : Rn+md+mb
++ −→

R ∪ {−∞}, and a Neperian revenue function, Rln : Rn+md+mb
++ −→ R ∪ {−∞}, defined by:

RCD(p
t
d, p

t
b, x

t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sup
ytd,y

t
b

{
∏

i∈md
yti

pti
∏

j∈mb
ytj

ptj : (ytd, y
t
b) ∈ P (xt)

}

if P (xt) ̸= ∅

−∞ if P (xt) = ∅

(3.11)

And

Rln(p
t
d, p

t
b, u

t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sup
υtd,υ

t
b

{

ptdυ
t
d + ptbυ

t
b : υ

t
d, υ

t
b ∈ P t

ln

}

if P t
ln ̸= ∅

−∞ if P t
ln = ∅

(3.12)

Note that:
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RCD(p
t
d, p

t
b, x

t) ≡ exp
(

Rln(p
t
d, p

t
b, u

t)
)

≡ exp
(

sup
υtd,υ

t
b

{

ptdυ
t
d + ptbυ

t
b : υ

t
d, υ

t
b ∈ P t

ln

}

)

≡ sup
υtd,υ

t
b

{

exp(ptdυ
t
d + ptbυ

t
b) : υ

t
d, υ

t
b ∈ P t

ln

}

≡ sup
ytd,y

t
b

{

exp
(

ptd ln(y
t
d) + ptb ln(y

t
b)
)

: υtd, υ
t
b ∈ P t

ln

}

≡ sup
ytd,y

t
b

{

exp
(

∑

i∈md

ln(yti
pti) +

∑

j∈mb

ln(ytj
ptj )
)

: υtd, υ
t
b ∈ P t

ln

}

≡ sup
ytd,y

t
b

{

exp
(

ln(
∏

i∈md

yti
pti) + ln(

∏

j∈mb

ytj
ptj )
)

: υtd, υ
t
b ∈ P t

ln

}

≡ sup
ytd,y

t
b

{

exp
(

ln(
∏

i∈md

yti
pti
∏

j∈mb

ytj
ptj)
)

: υtd, υ
t
b ∈ P t

ln

}

≡ sup
ytd,y

t
b

{

∏

i∈md

yti
pti
∏

j∈mb

ytj
ptj : ytd, y

t
b ∈ P t

}

.

In line with the initial work of Luenberger (1992), Chambers et al. (1996) and Briec and

Ravelojaona (2015), one can establish the following duality result between the environmental

exponential distance function and the revenue function:

EDt
expO(xt, ytd, y

t
b; 0, β

t
d, β

t
b) = ln

(

inf
ptd,p

t
b

{ Rexp(ptd, p
t
b, x

t)

(
∏

i∈md
yti

pti
∏

j∈mb
ytj

ptj )
: ptdβ

t
d + ptbβ

t
b = 1

}

)

(3.13)

and

RCD(p
t
d, p

t
b, x

t) = ln
(

sup
ytd,y

t
b

{

∏

i∈md

yti
pti
∏

j∈mb

ytj
ptjEDt

expO(xt, ytd, y
t
b; 0, β

t
d, β

t
b)

ptdβ
t
d+ptbβ

t
b

}

)

. (3.14)

It is consistent to point out that the revenue function (RCD) has a Cobb-Douglas func-

tional form. However, RCD is not the revenue function related to a Cobb-Douglas production

function but is the hyperplane support of the multiplicative technology set. The intersection
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of those hyperplanes constitute a boundary which is the subset of overall efficient units. The

distance between this boundary and the production units means technical and allocative

inefficiencies.

Following Luenberger (1996), the adjusted output price function is the point to set map

(ptd, p
t
b) : R

n
++ × R

md+mb
++ × [0, 1]md × [0, 1]mb −→ 2R

md
+ ×Rmb defined by:

(ptd, p
t
b)(x

t, ytd, y
t
b; 0, β

t
d, β

t
b) = arg min

(ptd,p
t
b)∈R

md
+ ×Rmb

{ Rexp(ptd, p
t
b, x

t)

(
∏

i∈md
yti

pti
∏

j∈mb
ytj

ptj )
: ptdβ

t
d + ptbβ

t
b = 1

}

.

(3.15)

At points where the exponential distance function is differentiable, an immediate conse-

quence of envelope theorem gives:

ptd(x
t, ytd, y

t
b; 0, β

t
d, β

t
b) = −

∂EDt
expO(xt, ytd, y

t
b; 0, β

t
d, β

t
b)

∂ln(ytd)
. (3.16)

and

ptb(x
t, ytd, y

t
b; 0, β

t
d, β

t
b) = −

∂EDt
expO(xt, ytd, y

t
b; 0, β

t
d, β

t
b)

∂ln(ytb)
. (3.17)

Remark that the use of the B-disposal assumption to model pollution-generating tech-

nologies allows to consider negative shadow prices for the bad outputs (Abad and Briec,

2016).

4 Distance Function in Dynamical Context

4.1 Discrete Time with Two Periods

Suppose two time periods τ ∈ {t, t − 1} and that the firm is inefficient at τ = t − 1 with

production units (ut−1, vt−1
b , vt−1

d ), where vb = {vb,1, ..., vb,i} is the undesirable output vector
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and vd = {vd,1, ..., vd,k} is the desirable output vector such that i ∈ [mb] and k ∈ [md]. The

neperian distance function at period τ = t− 1 with respect to the production technology at

period t is defined as follows:

ED
t(t−1)

lnO
(ut−1, vt−1

b , vt−1
d ; 0, βt−1

b , βt−1
d ) = sup

{

δ : (vt−1
b − δβt−1

b , vt−1
d + δβt−1

d ) ∈ P t
ln

}

.

Proposition 4.1.1 For all (ut, vtb, v
t
d) ∈ T

t(t−1)
ln and for all (0, βt−1

d , βt−1
b ) ∈ [0, 1], it can be

established that:

e(δ
t(t−1)) =

( ytd
yt−1
d

)

1

ρ
t(t−1)
d

βt−1
d =

(yt−1
b

ytb

)

1

ρ
t(t−1)
b

βt−1
b . (4.1)

Proposition 4.1.2 For all (ut−1, vt−1
b , vt−1

d ) ∈ T
t−1(t)
ln and (0, βt

b, β
t
d) ∈ [0, 1], the neperian

and the exponential distance functions can be expressed as variations of the factors or of the

products:

e(δ
t−1(t)) =

( ytd
yt−1
d

)

1

ρ
t−1(t)
d

βt
d =

(yt−1
b

ytb

)

1

ρ
t−1(t)
b

βt
b . (4.2)

Propositions ?? and ?? are proved in Appendix A. The dynamical exponential distance

function can be defined as a ratio of vectors through the introduction of the parameter ρ (see

Subsection 4.3).

4.2 Generalized Dynamical Distance Function

The notion established above can be extend to several periods. Suppose that τ ∈ {1, ..., t}

such that the production units (ut, vtb, v
t
d) at τ = t were adjusted all along in the same propor-

tion ρt ∈ R of each distance function, from ED
2(1)

lnO
(u1, v1b , v

1
d; 0, β

1
b ,β

1
d) to ED

t−1(t−2)

lnO (ut−2, vt−2
b , vt−2

d ; 0,βt−2
b ,βt−2

d ).

Assume that β1
b = β2

b = .... = βt
b and β

1
d = β2

d = ... = βt
d. Suppose also that the distance func-

tion of the penultimate period τ = t−1 is used to adjust the production units in ρt(t−1)δt(t−1)

proportion.

19



Proposition 4.2.1 For all (ut, vtb, v
t
d) ∈ T

t(t−1)
ln and (0, βt−1

b , βt−1
d ) ∈ [0, 1], the neperian and

the exponential distance functions can be expressed as variations of the factors or of the

products:

eδ
t(t−1)

=
(y1b
ytb

)

1

ρ
t(t−1)
b

βt−1
b ×

t−1
∏

r=2

e
−

ρ
r(r−1)
b

ρ
t(t−1)
b

δr(r−1)

=
(ytd
y1d

)

1

ρ
t(t−1)
d

βt−1
d ×

t−1
∏

r=2

e
−

ρ
r(r−1)
d

ρ
t(t−1)
d

δr(r−1)

. (4.3)

Proposition 4.2.2 For all (ut−1, vt−1
b , vt−1

d ) ∈ T
t−1(t)
ln and (0, βt

b, β
t
d) ∈ [0, 1], the neperian

and the exponential distance functions can be expressed as variations of the factors or of the

products:

eδ
t−1(t)

=
(y1b
ytb

)

1

ρ
t−1(t)
b

βt
b ×

t−1
∏

r=1

e
−

ρ
r(r+1)
b

ρ
t−1(t)
b

δr(r+1)

=
(ytd
y1d

)

1

ρ
t−1(t)
d

βt
d ×

t−1
∏

r=1

e
−

ρ
r(r+1)
d

ρ
t−1(t)
d

δr(r+1)

. (4.4)

Proofs of propositions ?? and ?? are in Appendix B.

4.3 Dynamical deviation

It is seen that the distance function in dynamical context contains a parameter depicted by

ρ. This latter can represent both internal and external constraints which does not allow the

complete achievement of efficiency variation and technological change by the firm. External

constraints, such externalities, environmental policies, economic circumstances etc., cannot

be controlled by the firms, while internal constraints depend essentially on their production

processes (technological competitiveness, etc.) and managerial procedures. Therefore, firms

can affect these variables adopting new investments, promoting innovative staff members

skills etc.. All of the times the dynamical deviation ρ is greater, respectively lesser, than

zero, both internal and external constraints not allow optimal technical efficiency adjustment

and/or technological variation of the firms. Furthermore, when the dynamical deviation ρ

is equal to one, both internal and external constraints not affect these adjustments of the

firms. Since the constraints affecting the adjustements are not the same in the desirable
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and undesirable output dimensions, dynamical deviation ρ can be defined separately in both

dimensions (Figure ??).

Proposition 4.3.1 For all i ∈ {2, ..., t} and δt(t−1), the externality weight is expressed as

follows:

ρ
i(i−1)
b =

v1b − vtb
δi(i−1)βi−1

b

−
i−1
∑

r=2

ρ
r(r−1)
b

δr(r−1)

δi(i−1)
−

t
∑

r=i+1

ρ
r(r−1)
b

δr(r−1)

δi(i−1)
(4.5)

and

ρ
i(i−1)
d =

vtd − v1d
δi(i−1)βi−1

d

−
i−1
∑

r=2

ρ
r(r−1)
d

δr(r−1)

δi(i−1)
−

t
∑

r=i+1

ρ
r(r−1)
d

δr(r−1)

δi(i−1)
. (4.6)

Thus, it is obvious that the exponential expression of the parameter is:

eρ
i(i−1)
b =

(y1b
ytb

)
1

δi(i−1)βi−1
b × Πi−1

r=2e
−ρr(r−1)

b
δr(r−1)

δi(i−1) ×Πt
r=i+1e

−ρr(r−1)
b

δr(r−1)

δi(i−1)

and

eρ
i(i−1)
d =

(ytd
y1d

)
1

δi(i−1)βi−1
d × Πi−1

r=2e
−ρr(r−1)

d
δr(r−1)

δi(i−1) × Πt
r=i+1e

−ρr(r−1)
d

δr(r−1)

δi(i−1) .

Proposition 4.3.2 For all i ∈ {1, ..., t − 1} and δt(t+1), the externality weight is expressed

as follows:

ρ
i(i+1)
b =

v1b − vtb
δi(i+1)βi+1

b

−
i−1
∑

r=1

ρ
r(r+1)
b

δr(r+1)

δi(i+1)
−

t−1
∑

r=i+1

ρ
r(r+1)
b

δr(r+1)

δi(i+1)
(4.7)

and

ρ
i(i+1)
d =

vtd − v1d
δi(i+1)βi+1

d

−
i−1
∑

r=1

ρ
r(r+1)
d

δr(r+1)

δi(i+1)
−

t−1
∑

r=i+1

ρ
r(r+1)
d

δr(r+1)

δi(i+1)
. (4.8)

And through exponential transformation, we have:

eρ
i(i+1)
b =

(y1b
ytb

)
1

δi(i+1)βi+1
b × Πi−1

r=1e
−ρ

r(r+1)
b

δr(r+1)

δi(i+1) ×Πt−1
r=i+1e

−ρ
r(r+1)
b

δr(r+1)

δi(i+1)

and

eρ
i(i+1)
d =

(ytd
y1d

)
1

δi(i+1)βi+1
d ×Πi−1

r=1e
−ρr(r+1)

d
δr(r+1)

δi(i+1) × Πt−1
r=i+1e

−ρr(r+1)
d

δr(r+1)

δi(i+1) .
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Figure 2: Dynamical deviation ρ in both desirable and undesirable output dimensions

Figure 2 presents an illustration of the dynamical deviation ρt+1(t) in both dimension,

desirable and undesirable. Suppose a firm produces (vd, vb) outputs represented by the point

A at time period t = 1. Assume that at time period t = 2, several options may occur for the

firm :

• Point B corresponds to the case where the firm is efficient at time period t = 2 such

that ρt+1(t)
d = ρ

t+1(t)
b = 1.

• Point C depicts the situation where the firm simultaneously improves and reduces

respectively its desirable and undesirable outputs. In such a case, ρt+1(t)
d ̸= ρ

t+1(t)
b with

(ρt+1(t)
d , ρ

t+1(t)
b ) > 0.

• Point D describes the circumstance where the firm increases its good outputs and

maintains constant its bad outputs with ρt+1(t)
d > 0 and ρt+1(t)

b = 0.

• When the firm increases both desirable and undesirable outputs (point E), ρt+1(t)
d ̸=

ρ
t+1(t)
b with ρt+1(t)

d > 0 and ρt+1(t)
b < 0.
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• Finally, when the firm keeps constant its desirable outputs and increases its bad outputs

(point F), then ρt+1(t)
d = 0 and ρt+1(t)

b < 0.

Remark that points C,D,E,F represent the situations where the firm does not operate

efficiently at time period t = 2. Furthermore, note that there exists reverse situations of

points B,C,D,E,F with respect to the signs of parameters ρt+1(t). Thus, in such a case, the

deductions based upon the above explanations are obvious. Evidently, for the cross-time

period t(t + 1), the same logical reasoning can be applied.

4.4 Exponential Environmental Productivity Index and Indicators

in Dynamical Context

Following the notion exposed above, we can state that the EEL can be expressed as below:

EEL(xt, xt+1, ytd, y
t
b, y

t+1
d , yt+1

b ; γt, γt+1) (4.9)

=
1

2

[

(

EDt
expO(xt, ytd, y

t
b; 0, β

t
d, β

t
b)− ln

(

(
y1b
ytb
)

1

ρ
t−1(t)
b

βt
b ×

t−1
∏

r=1

e
−

ρrb

ρ
t−1(t)
b

δr(r+1)
))

+
(

ln
(

(
y1b
ytb
)

1

ρ
t(t−1)
b

βt−1
b ×

t−1
∏

r=2

e
−

ρrb

ρ
t(t−1)
b

δr(r−1)
)

− EDt+1
expO(x

t+1, yt+1
d , yt+1

b ; 0, βt+1
d , βt+1

b )
)

]

.

In such case that ρt−1(t) = ρt(t−1) = 1 then δt(t−1) = δt−1(t) = 0, then the EEL becomes:

EEL(xt, xt+1, ytd, y
t
b, y

t+1
d , yt+1

b ; γt, γt+1)

=
1

2

[

EDt
expO(xt, ytd, y

t
b; 0, β

t
d, β

t
b)− EDt+1

expO(x
t+1, yt+1

d , yt+1
b ; 0, βt+1

d , βt+1
b )

]

.
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In the same argumentation as above, we can express the EML as following:

EML(xt, xt+1, ytd, y
t+1
d , ytb, y

t+1
b ; 0, γt, γt+1) =

⎡

⎢

⎢

⎣

1 + EDt
expO(xt, ytd, y

t
b; 0, β

t
d, β

t
b)

1 + ln
(

(y1b
ytb

)

1

ρ
t−1(t)
b

βt
b ×

∏t−1
r=1 e

−
ρr
b

ρ
t−1(t)
b

δr(r+1))

×
1 + ln

(

(y1b
ytb

)

1

ρ
t(t−1)
b

βt−1
b ×

∏t−1
r=2 e

−
ρrb

ρ
t(t−1)
b

δr(r−1)
)

1 + EDt+1
expO(xt+1, yt+1

d , yt+1
b ; 0, βt+1

d , βt+1
b )

⎤

⎥

⎥

⎦

1
2

.

(4.10)

Thus, if ρt−1(t) = ρt(t−1) = 1 meaning that δt(t−1) = δt−1(t) = 0 then:

EML(xt, xt+1, ytd, y
t+1
d , ytb, y

t+1
b ; 0, γt, γt+1) =

[

1 + EDt
expO(xt, ytd, y

t
b; 0, β

t
d, β

t
b)

1 + EDt+1
expO(xt+1, yt+1

d , yt+1
b ; 0, βt+1

d , βt+1
b )

]
1
2

.

In the same vein, the dynamical version of the EUCEG is defined by:

EUCEG =
1

2
[EUCEGt + EUCEGt+1]

=
1

2
[(EELOt + EELOt+1)− (EELI t − EELI t+1)]

=
1

2

[

(

EDt
expO(xt, ytd, y

t
b; 0, β

t
d, 0)−EDt+1

expO(x
t+1, yt+1

d , yt+1
b ; 0, βt+1

d , 0)
)

+

(

(ytd
y1d

)

1

ρ
t(t−1)
d

βt−1
d ×

t−2
∏

r=1

e
−

ρ
r(r−1)
d

ρ
t(t−1)
d

δ
r(r−1)
d

−
(ytd
y1d

)

1

ρ
t−1(t)
d

βt
d ×

t−1
∏

r=1

e
−

ρ
r(r+1)
d

ρ
t−1(t)
d

δ
r(r+1)
d

)

+
(

EDt
expO(xt, ytd, y

t
b; 0, 0, β

t
b)−EDt+1

expO(x
t+1, yt+1

d , yt+1
b ; 0, 0, βt+1

b )
)

+

(

(y1b
ytb

)

1

ρ
t(t−1)
b

βt−1
b ×

t−2
∏

r=1

e
−

ρ
r(r−1)
b

ρ
t(t−1)
b

δ
r(r−1)
b

−
(y1b
ytb

)

1

ρ
t−1(t)
b

βt
b ×

t−1
∏

r=1

e
−

ρ
r(r+1)
b

ρ
t−1(t)
b

δ
r(r+1)
b

)]

.

(4.11)

Note that in the dynamical version of EUCEG δd ̸= δb and ρd ̸= ρb in most cases.
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4.5 Quantity Index

Take the case of two successive discrete time periods with a single desirable output yd and

a single undesirable output yb, exposed in the subsection ??. The expression of the distance

function was defined as:

e(δ
t(t−1)) =

⎧

⎪

⎨

⎪

⎩

(

yt−1
b

ytb

)

1

ρ
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b
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d

)

1

ρ
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d
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d
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⎧

⎪

⎨

⎪

⎩

(
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b

ytb

)

1

ρ
t−1(t)
b

βt
b

(

ytd
yt−1
d

)

1

ρ
t−1(t)
d

βt
d

The ratio of these two expressions, with some rearrangements, leads to have the analogous

expression of the Törnqvist Total Factor Productivity Index5 (TTFPI) in the case of a single

input and a single output (See and Coelli, 2014). The expression of the TTFPI in multi-input

and multi-output context is defined as:

TTFPI =

∏

k∈[md]

( ytd,k
yt−1
d,k

)

r
t−1
d,k

+rtd,k
2

∏

i∈[mb]

( ytb,i
yt−1
b,i

)

st−1
b,i

+st
b,i

2

sb,i and rd,k are respectively the cost and revenue shares of the band and good outputs such

that
∑

i∈[mb]
sb,i = 1 and

∑

k∈[md]
rd,k = 1.

Whence, through the formulations of the distance function we have:

e(2.δ
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)
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. (4.12)

5Törnqvist Total Factor Productivity measure is multiplicatively complete. O’Donnell (2010, 2012, 2014,
2016) shows that this TFP measure can be decomposed within finer measures of efficiency in terms of
aggregate quantities.
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And to have the analogous expression to the TTFPI, the ratio becomes:

e((md+mb).δt(t−1)) =

∏
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(
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(4.13)

and

e((md+mb).δt−1(t)) =

∏
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. (4.14)

It is obvious that in most cases

∑

k∈[md]

rt−1
d,k + rtd,k

2
̸=
∑

k∈[md]

1

ρ
t(t−1)
d,k βt−1

d,k

and
∑
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b,i + stb,i

2
̸=
∑

i∈[mb]

1

ρ
t(t−1)
b,i βt−1

b,i

. (4.15)

However, if
∑

k∈[md]
ρ
t(t−1)
d,k βt−1

d,k = 1
2 and

∑

i∈[mb]
ρ
t(t−1)
b,i βt−1

b,i = 1
2 , then the expression of

e((md+mb).δ
t(t−1)) can lead to an implicit Törnqvist Total Factor Productivity Index. This

TTFPI is qualified to be implicit due to the difference between the weights of the TTFPI

based upon market prices (Törnqvist, 1936) and the weights considered above for each com-

ponent. The same argumentation is made for e((md+mb).δt−1(t)).

5 Empirical illustration

5.1 Data

The dataset is sourced from many reports and documents of the Ministère de l’écologie, du

Développement durable et de l’Énergie (http://www.developpement-durable.gouv.fr). Ac-

cording to the literature review and data availability, one input is selected: Operational costs

(Keuros). This input indicator allows to produce different outputs. Thus, one desirable

output, Passengers (number of passengers); and one undesirable output represented by the
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average delay of flights delayed for more than 15 minutes (Delay flights).

Table 1 presents the statistic descriptives of the variables used in this study.

Table 1: Characteristics of inputs and outputs
Variables Min Max Mean St. Dev.

Inputs
Operational costs (Keuros) 17702 1112248 218476.54 349957.95

Good Output
Passengers (quantity) 1060705 60970551 12006427.82 16528698.55

Bad Output
Delay flights (minutes) 25 51 41.45 4.99

5.2 Results

Under a constant returns-to-scale technology, Table 2 shows the results of productivity indi-

cators and index based on the exponential distance function, for the years 2008 to 2011. As

readers can see, the exponential environmental Luenberger productivity indicator presents

some infeasabilities (e.g. Nantes and Bordeaux for the consecutive time periods 2009-2010).

Since, the exponential Malmquist-Luenberger index and the exponential Luenberger indicator

are based upon cross-period efficiency measurement, it is not remarkable that infeasabilities

appear for the same Decision Making Units (DMU) at the same cross-period. This is not

surprisingly since our new productivity indicator and index inherit the basic structure of

classical productivity indicator and index. The special issue of infeasabilities for this kind of

productivity index and indicator was already noticed in Briec and Kerstens (2004, 2009). In

addition, applying a variable returns-to-scale technology does not avoid infeasabilities occur-

ing in the results. In fact, infeasabilities occur when the efficiency at period t is measured

with respect to the production technology set at period t− 1 or t + 1 (technological change

measurement, see Table 2). Changing returns-to-scale assumption solely impacts the number

of efficient DMUs at period t with respect to the technology set at the same time period 6.

This paper focus on the estimation of DMUs’ efficiency under a constant returns-to-scale

6More DMUs are efficient due to a variable returns-to-scale reference technology
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assumption. However, the returns-to-scale measurement of units onto the efficient frontier

(projection units) under a variable returns-to-scale reference technology can be further ex-

plored (see Krivonozhko et al., 2014). Table 2 also presents the results of the exponential

undesirable component environmental generalised productivity indicator. Readers can re-

mark that all infeasabilities are removed through fictive observations constructed by crossing

data of two time periods (e.g:(vtd, v
t
b+1), see Figure 1). Then, a comprehensive environmental

productivity analysis can be proposed avoiding infeasabilities.

For the consecutive time periods 2009-2010, the two main airports in France (Paris-

CDG and Paris-Orly) presents negative productivity changes (EEL, EML and EUCEG).

Regarding the mean of productivity index and indicator over the time period from 2008 to

2011, EEL and EUCEG take negative value and EML takes positive value for both DMUs.

Concerning the results of the EUCEG indicator over this cross time period, both airports

have negative EELO and positive EELI meaning that these DMUs produce less desirable

and more undesirable outputs at year 2010 than 2009. In addition, the EUCEG of these

airports takes negative value which involves a downgrading of the ecological productivity.

Table 3 presents the results of dynamical deviations based on the exponential environ-

mental generalized cross-time distance function. Dynamical deviations exposed in Table 3

confirm that Paris-CDG and Paris-Orly present a non-optimal technical efficiency adjust-

ment path. These airports are affected by both internal and external constraints which does

not allow the entire diminution of the inefficiency over the period 2008-2010. Furthermore,

for Paris-Orly airport, one can see that both internal and external constraints most affect

technical efficiency adjustment path in bad output dimension rather than in desirable output

dimension (i.e. −0.4862 < −0.1325 < 1 for the consecutive time periods 2008-2009).
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Table 2: Exponential Productivity Indicators
Exponential Environmental Luenberger

2008-2009 2009-2010 2010-2011
EV TV EEL EV TV EEL EV TV EEL

Paris-CDG 0.0225 -0.0516 -0.0290 -0.1020 0.0109 -0.0911 0.1020 -0.0938 0.0082
Paris-Orly -0.0883 -0.0498 -0.1380 -0.0404 0.0072 -0.0331 0.1722 -0.0904 0.0817
Nice 0.2277 -0.1289 0.0988 0 0.0634 0.0634 -0.0137 -0.2102 -0.2240
Lyon -0.0245 -0.0607 -0.0852 0.0801 -0.0059 0.0741 0.0920 -0.1320 -0.0401
Marseille 0 -0.0999 -0.0999 0 -0.0116 -0.0116 -0.1391 -0.0640 -0.2032
Toulouse 0.0475 -0.0646 -0.0171 -0.0588 -0.0236 -0.0824 0.1090 -0.0676 0.0415
Bordeaux 0 -0.0988 -0.0988 0 Infinity Infinity 0 Infinity Infinity
Ble-Mulhouse -0.0154 -0.0619 -0.0772 0.0839 -0.0214 0.0624 0.0621 -0.0376 0.0245
Beauvais 0.2019 -0.0637 0.1382 0.0723 -0.0365 0.0358 -0.1886 0.0422 -0.1464
Nantes 0.0431 Infinity Infinity -0.0671 Infinity Infinity 0.0671 Infinity Infinity
Strasbourg 0.0178 -0.0647 -0.0469 0.0314 -0.0468 -0.0154 0.2020 -0.0303 0.1717

Exponential Malmquist-Luenberger

2008-2009 2009-2010 2010-2011
EV TV ML EV TV ML EV TV ML

Paris-CDG 1.0225 0.9503 0.9717 0.9075 1.0103 0.9168 1.1020 0.9146 1.0078
Paris-Orly 0.9307 0.9602 0.8937 0.9693 1.0056 0.9747 1.1507 0.9289 1.0689
Nice 1.2277 0.8905 1.0933 1 1.0676 1.0676 0.9864 0.8028 0.7919
Lyon 0.9810 0.9534 0.9353 1.0664 0.9954 1.0615 1.0825 0.8917 0.9653
Marseille 1 0.9008 0.9008 1 0.9885 0.9885 0.8779 0.9357 0.8214
Toulouse 1.0452 0.9416 0.9842 0.9470 0.9781 0.9263 1.1090 0.9380 1.0402
Bordeaux 1 0.9030 0.9030 1 Infinity Infinity 1 Infinity Infinity
Ble-Mulhouse 0.9876 0.9509 0.9391 1.0726 0.9822 1.0536 1.0568 0.9670 1.0220
Beauvais 1.1838 0.9481 1.1223 1.0705 0.9662 1.0343 0.8448 1.0369 0.8759
Nantes 1.0431 Infinity Infinity 0.9371 Infinity Infinity 1.0671 Infinity Infinity
Strasbourg 1.0144 0.9492 0.9629 1.0261 0.9623 0.9875 1.2020 0.9657 1.1608

Exponential Undesirable Component Environmental Generalised

2008 - 2009 2009 - 2010 2010 - 2011
EELO EELI EUCEG EELO EELI EUCEG EELO EELI EUCEG

Paris-CDG -0.0500 0.0247 -0.0747 0.0045 0.1151 -0.1106 0.0471 0 0.0471
Paris-Orly -0.0430 0.1576 -0.2006 0.0038 0.0408 -0.0370 0.0740 -0.0834 0.1574
Nice -0.0549 -0.1719 0.1169 -0.0252 -0.1335 0.1084 0.0818 0.3814 -0.2995
Lyon -0.0254 0.1306 -0.1560 0.0338 -0.1542 0.1880 0.0556 0.0910 -0.0353
Marseille 0.0455 0.2776 -0.2321 0.0313 0.0299 0.0015 -0.0214 0.3655 -0.3868
Toulouse -0.0107 0 -0.0107 0.0195 0.0247 -0.0052 0.0870 -0.0500 0.1370
Bordeaux -0.0695 0.0476 -0.1171 0.0981 0.1508 -0.0527 0.1166 -0.2231 0.3397
Ble-Mulhouse -0.1016 0.0476 -0.1492 0.0699 -0.0723 0.1422 0.2001 0.0488 0.1513
Beauvais 0.0423 -0.0247 0.0669 0.1232 -0.1335 0.2568 0.2267 0.3365 -0.1098
Nantes -0.0237 0.1178 -0.1415 0.1330 0.1252 0.0079 0.0677 -0.1252 0.1929
Strasbourg -0.1315 0 -0.1315 -0.0449 0.0488 -0.0937 0.0181 0.0235 -0.0055
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Table 3: Dynamical Deviation and Exponential Environmental Generalized Dynamical Lu-
enberger Productivtiy Indicator

ρt(t+1)
2008(2009) 2009(2010) 2010(2011)

Bad output Good output Bad output Good output Bad output Good output

Paris-CDG 0.8502 1.7210 -15.4778 0.6030 0 5.6821
Paris-Orly -1.1560 -0.3150 -0.1450 0.0136 0.3719 0.3300
Nice 1.5733 -0.5028 3.8858 -0.7319 1.5740 -0.3378
Lyon -0.6472 -0.1256 0.5645 0.1238 -1.4280 0.8731
Marseille 1.9711 -0.3230 2.3834 -2.5011 3.2411 0.1896
Toulouse 0 -0.3265 -1.1006 0.8700 1.0298 1.7914
Bordeaux 0.3767 0.5498 2.5957 -1.6882 Infinity Infinity
Ble-Mulhouse -0.2954 -0.6299 0.3334 0.3223 -0.4613 1.8921
Beauvais 0.1034 0.1769 2.3915 2.2072 -10.9341 7.3668
Nantes 2.3263 0.4677 60.4042 -64.1958 Infinity Infinity
Strasbourg 0 -0.7079 -0.2586 -0.2379 -0.0758 0.0582

ρt+1(t)
2009(2008) 2010(2009) 2011(2010)

Bad output Good output Bad output Good output Bad output Good output

Paris-CDG -0.4792 -0.9700 -1.3121 0.0511 0 0.5013
Paris-Orly -0.4862 -0.1325 -0.1328 0.0124 0.3581 0.3177
Nice 1.2335 -0.3942 -1.4436 0.2719 -1.9869 0.4264
Lyon -0.3756 -0.0729 0.7522 0.1650 -0.3858 0.2359
Marseille -4.7138 0.7725 -2.8009 2.9392 -2.3667 -0.1384
Toulouse 0 -0.0937 -0.1922 0.1519 0.6698 1.1651
Bordeaux -0.6685 -0.9756 Infinity Infinity Infinity Infinity
Ble-Mulhouse -0.1586 -0.3382 0.4111 0.3974 -0.4106 1.6841
Beauvais 0.1503 0.2571 2.3619 2.1798 -2.4935 1.6800
Nantes Infinity Infinity Infinity Infinity Infinity Infinity
Strasbourg 0 -0.4423 -0.1945 -0.1789 -0.1393 0.1070

6 Conclusion

The theoretical contribution of this paper consists to propose new exponential environmental

productivity index and indicators. These innovative productivity measures are constructed

based on an exponential distance function. Looking from a dynamical viewpoint, we define

a dynamical version of the exponential distance function allowing to take into account in-

ternal and external constraints which affect productivity variation. Innovative exponential

generalized dynamical environmental productivity index and indicators are then proposed.

Results of the productivity measures (EEL, EML and EUCEG) based on both consecutive

time periods are proposed for a sample of 11 representative French airports. We point out

that some infeasabilities can occur when we implement the EEL and the EML which are

removed when computing the EUCEG. Such specification allows to define a comprehensive

ecological productivity analysis. In addition, for the same sample, we present the ”dynamical

deviation” which consider both internal and external constraints that may impede optimal
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technical efficiency variation and technological change achievement in both desirable and

undesirable dimensions.

Innovative EUCEG takes the form of an additive complete TFP measure in the sense

of O’Donnell (2010, 2012, 2014, 2016) such that a decomposition within finer measures of

efficiency in terms of aggregate quantities of the EUCEG could be an extension of this paper.
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R. (Eds.) Index Numbers: Essays in Honour of Sten Malmquist, Kluwer Academic

Publishers.
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Färe, R., S. Grosskopf, M. Norris, Z. Zhang (1994) Productivity growth, technical progress,

33



and efficiency change in industrialized countries, The American Economic Review, 84,

66-83.
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Appendix A

Proof of Proposition ??:

Since ED
t(t−1)

lnO
(ut−1, vt−1

b , vt−1
d ; 0, βt−1

b , βt−1
d ) = δt(t−1), the production units at time τ = t

can be expressed as:

(ut, vtb, v
t
d) = (ut−1, vt−1

b , vt−1
d ) + ED

t(t−1)

lnO
(ut−1, vt−1

b , vt−1
d ; 0, βt−1

b , βt−1
d ) · (0, βt−1

b , βt−1
d ).

Suppose that the firm fits its production units at a proportion ρt(t−1) ∈ R of the distance

function such that (ut, vtb, v
t
d) can be inefficient and δt ≥ 0. Thus, each production unit can

be expressed as:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ut = ut−1

vtb = vt−1
b − ρ

t(t−1)
b δt(t−1)βt−1

b

vtd = vt−1
d + ρ

t(t−1)
d δt(t−1)βt−1

d

Whence, in such case, the neperian distance function can be write as follows:

δt(t−1) =
vt−1
b −vtb

ρ
t(t−1)
b βt−1

b

=
ln(yt−1

b )−ln(ytb)

ρ
t(t−1)
b βt−1

b

=
vtd−vt−1

d

ρ
t(t−1)
d βt−1

d

=
ln(ytd)−ln(yt−1

d )

ρ
t(t−1)
d βt−1

d

.

The exponential formulation is:

exp(δt(t−1)) = exp
( ln(yt−1

b )− ln(ytb)

ρ
t(t−1)
b βt−1

b

)

= exp
( ln(ytd)− ln(yt−1

d )

ρ
t(t−1)
d βt−1

d

)

.

Then,
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e(δ
t(t−1)) =

(yt−1
b

ytb

)

1

ρ
t(t−1)
b

βt−1
b =

( ytd
yt−1
d

)

1

ρ
t(t−1)
d

βt−1
d .

In such case that the firm is efficient at τ = t so ρt(t−1) = 1, the distance function becomes:

e(δ
t(t−1)) =

(yt−1
b

ytb

)
1

βt−1
b =

( ytd
yt−1
d

)
1

βt−1
d .

Proof of Proposition ??:

Assume that the firm is inefficient at the τ = t such that ρt−1(t) ̸= 1, then:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ut−1 = ut

vt−1
b = vtb + ρ

t−1(t)
b δt−1(t)βt

b

vt−1
d = vtd − ρ

t−1(t)
d δt−1(t)βt

d

Hence the distance function can be expressed as follows:

δt−1(t) =
vt−1
b −vtb
ρt−1(t)
b βt

b

=
ln(yt−1

b )−ln(ytb)

ρt−1(t)
b βt

b

=
vtd−vt−1

d

ρt−1(t)
d βt

d

=
ln(ytd)−ln(yt−1

d )

ρt−1(t)
d βt

d

.

The exponential formulation is:

exp(δt−1(t)) = exp
( ln(yt−1

b )− ln(ytb)

ρ
t−1(t)
b βt

b

)

= exp
( ln(ytd)− ln(yt−1

d )

ρ
t−1(t)
d βt

d

).

Then,

eδ
t−1(t)

=
(yt−1

b

ytb

)

1

ρ
t−1(t)
b

βt
b =

( ytd
yt−1
d

)

1

ρ
t−1(t)
d

βt
d .
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If ρt−1(t) = 1, the notion set above becomes:

eδ
t−1(t)

=
(yt−1

b

ytb

)
1
βt
b =

( ytd
yt−1
d

)
1
βt
d .
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Appendix B

Proof of Proposition ??: In the case where the firm is inefficient then ρt(t−1) ̸= 1 at τ = t,

the decomposition of the production units is:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ut = u1

vtb = v1b − ρ
2(1)
b δ2(1)β1

b − ρ
3(2)
b δ3(2)β2

b − ...− ρ
t(t−1)
b δt(t−1)βt−1

t

vtd = v1d + ρ
2(1)
d δ2(1)β1

d + ρ
3(2)
d δ3(2)β2

d + ... + ρ
t(t−1)
d δt(t−1)βt−1

d

Thus,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ut = u1

vtb = v1b − βb
∑t−1

r=2 ρ
r(r−1)
b δr(r−1) − ρ

t(t−1)
b δt(t−1)βt−1

b

vtd = v1d + βd
∑t−1

r=2 ρ
r(r−1)
d δr(r−1) + ρ

t(t−1)
d δt(t−1)βt−1

d

Hence, the distance function in dynamical context is:

δt(t−1) =
v1b−vtb−βb

∑t−1
r=2 ρ

r(r−1)
b δr(r−1)

ρt(t−1)
b βt−1

b

=
(

v1b−vtb
ρt(t−1)
b βt−1

b

)

− 1

ρt(t−1)
b

∑t−1
r=2 ρ

r(r−1)
b δr(r−1)

=
vtd−v1d−βd

∑t−1
r=2 ρ

r(r−1)
d δr(r−1)

ρt(t−1)
d βt−1

d

=
(

vtd−v1d
ρt(t−1)
d βt−1

d

)

− 1

ρt(t−1)
d

∑t−1
r=2 ρ

r(r−1)
d δr(r−1).

Whence,

δt(t−1) =
( ln(y1b )− ln(ytb)

ρ
t(t−1)
b βt−1

b

)

−
1

ρ
t(t−1)
b

t−1
∑

r=2

ρ
r(r−1)
b δr(r−1)

=
( ln(ytd)− ln(y1d)

ρ
t(t−1)
d βt−1

d

)

−
1

ρ
t(t−1)
d

t−2
∑

r=2

ρ
r(r−1)
d δr(r−1),
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then the exponential expression is as follows:

exp(δt(t−1)) = exp
(

( ln(y1b )− ln(ytb)

ρ
t(t−1)
b βt−1

b

)

−
1

ρ
t(t−1)
b

t−1
∑

r=2

ρ
r(r−1)
b δr(r−1)

)

= exp
(

( ln(ytd)− ln(y1d)

ρ
t(t−1)
d βt−1

d

)

−
1

ρ
t(t−1)
d

t−1
∑

r=2

ρ
r(r−1)
d δr(r−1)

)

.

Thus,

e(δ
t(t−1)) =

(y1b
ytb

)

1

ρ
t(t−1)
b

βt−1
b ×

t−1
∏

r=2

e
− 1

ρ
t(t−1)
b

ρ
r(r−1)
b δr(r−1)

=
(ytd
y1d

)

1

ρ
t(t−1)
d

βt−1
d ×

t−2
∏

r=1

e
− 1

ρ
t(t−1)
d

ρ
r(r−1)
d δr(r−1)

.

In such case that the firm is efficient at τ = t so ρt(t−1) = 1, the distance function becomes:

e(δ
t(t−1)) =

(y1b
ytb

)
1

βt−1
b ×

t−1
∏

r=2

e−ρ
r(r−1)
b δr(r−1)

=
(ytd
y1d

)
1

βt−1
d ×

t−1
∏

r=2

e−ρ
r(r−1)
d δr(r−1)

.

Proof of Proposition ??: Assume that the firm is inefficient at the time τ = t such that

ρt−1(t) ̸= 1, then

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

u1 = ut

v1b = vtb + ρ
1(2)
b δ1(2)β2

b + ρ
2(3)
b δ2(3)β3

b + ... + ρ
t−1(t)
b δt−1(t)βt

b

v1d = vtd − ρ
1(2)
d δ1(2)β2

d − ρ
2(3)
d δ2(3)β3

d − ...− ρ
t−1(t)
d δt−1(t)βt

d

Hence the distance function can be expressed as follows:

δt−1(t) =
v1b − vtb

ρ
t−1(t)
b βt

b

−
1

ρ
t−1(t)
b

t−1
∑

r=1

δr(r+1)ρ
r(r+1)
b βr+1

b

=
vtd − v1d

ρ
t−1(t)
d βt

d

−
1

ρ
t−1(t)
d

t−1
∑

r=1

δr(r+1)ρ
r(r+1)
d βr+1

d .
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Thus, the exponential formulation of the distance function is:

eδ
t−1(t)

=
(y1b
ytb

)

1

ρ
t−1(t)
b

βt
b ×

t−1
∏

r=1

e
−

ρ
r(r+1)
b

ρ
t−1(t)
b

δr(r+1)

=
(ytd
y1d

)

1

ρ
t−1(t)
d

βt
d ×

t−1
∏

r=1

e
−

ρ
r(r+1)
d

ρ
t−1(t)
d

δr(r+1)

.

If ρt−1(t) = 1, the notion set above becomes:

eδ
t−1(t)

=
(y1b
ytb

)
1
βt
b ×

t−1
∏

r=1

e−ρ
r(r+1)
b δr(r+1)

=
(ytd
y1d

)
1
βt
d ×

t−1
∏

r=1

e−ρ
r(r+1)
d δr(r+1)

.
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