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Abstract 
Most of previous research about Total Factor Productivity (TFP) at the macro level only 
emphasizes technical effect and technological progress at the country level, but it ignores 
structural effect for a group of countries at the aggregate level. This paper attempts to measure 
the green productivity evolution incorporating carbon dioxide emissions based on the 
Luenberger productivity indicator for a group of 30 OECD countries over the period of 
1971−2011. We propose a novel decomposition for green productivity growth at the aggregate 
level which separates productivity changes into three components: technological progress, 
technical efficiency change, and structural efficiency change. The structural effect captures the 
heterogeneity in the combination of input and output mixes among countries that can impact 
productivity growth at a more aggregate level. In the literature, this effect has not been 
quantified for a group of nations such as the OECD countries. Our results indicate that the 
traditional TFP index underestimates green growth which is motivated by the effective and 
efficient environmental policies of the OECD. For the last two decades, the green productivity 
growth has been mainly driven by technology progress. 
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1. Introduction 

 
For a long time period, income per capita has been considered to be mainly driven by 

total factor productivity (TFP) changes, but more recently standard of living and welfare have 

become important factors in regard to green economic growth due to the deterioration in global 

environmental conditions. Measures of productivity change at macro and micro levels have 

attracted much attention by using different parametric or non-parametric frameworks. 

Traditionally, productivity gains are evaluated through output changes not explained by input 

variations. This is initially attributed to the traditional Solow residual interpreted as 

technological progress (shift of the production frontier; Solow, 1957). Later a technical 

efficiency change component (movement to the production frontier) was added to this technical 

progress to explain productivity change (Färe et al., 1994). 

Based on the recent literature, our study attempts to measure a green productivity growth 

indicator for a whole group including 30 OECD countries over the period of 1971−2011. 

Compared to previous studies on productivity growth, the first goal of our research is to measure 

the green productivity evolution incorporating carbon dioxide emissions. A second goal is to 

separate productivity changes into three components: technological progress, technical 

efficiency change, and structural efficiency change. Although the first two elements are well-

known in the literature and depend on the capability of a particular country to reach the best 

technical practices and carry out innovations, the third element is our main contribution which 

covers the heterogeneity in the combination of input intensity and output specialization. The 

structural efficiency change can be observed as a proxy for an input/output deepening or 

expanding effect associated with dynamic convergence or divergence of resource reallocation 

in the economic organization.  

The last effect is particularly relevant in the new vision of the role of environment in 

economic welfare related to global warming and the threat of melting glaciers. Indeed, 
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economists have begun to pay serious attention to the sustainability of economic development 

and have emphasized savings through environmental protection. Moreover, various 

international organizations, negotiations, and forums have also been established for enhancing 

intergovernmental cooperation among regions and countries because pollution control and 

environmental protection must be negotiated and managed by a global consortium of nations 

and not only at the national level. Structural efficiency is explicitly related to the adjustments 

of output and/or input mixes occurring within a group of countries over time. In this way, this 

element impacts green productivity growth at a worldwide level. 

Compared to many other empirical applications which employ the ratio-based 

Malmquist productivity index, the objective of this paper is to analyze the green productivity 

growth for an aggregation of developed countries (OECD member countries) and to propose a 

novel decomposition of the difference-based Luenberger productivity indicator. Beyond the 

two traditional components, namely technical efficiency change and technological progress, or 

three components with scale efficiency change (e.g. Kapelko et al., 2015), our decomposition 

captures a new effect called structural efficiency.  

Numerous researches about environmental efficiency and productivity have arisen in 

the past few decades. Ecologists and economists have both proposed various methods and 

models to evaluate carbon abatement costs and their effects on TFP evolution. Some previous 

measurements use a functional form to characterize the production activity including pollution.  

Färe et al. (1993) and Hailu and Veeman (2000) propose a translog distance function to include 

bad outputs in an econometric framework. To avoid specifying a functional form of the 

technology and the inefficiency distribution, data envelopment analysis (DEA) is a non-

parametric approach which estimates the best practice frontier by enveloping the data. Since 

the initial framework was developed by Charnes et al. (1978), DEA has become more and more 
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popular especially because of its capacity to include undesirable outputs through a weak 

disposable assumption and to decompose the Luenberger productivity indicator. 

The reminder of the paper is structured as follows: Section 2 offers a recent literature 

review. Section 3 reviews weakly disposable technology and proposes a green productivity 

model. By using directional distance functions, this framework is able to conceptualize the 

aggregate production frontier for the whole set of OECD countries and to split green 

productivity gain into its three components. Section 4 introduces the data source and comments 

on the empirical results. Conclusions and future research topics appear in the final section. 

 

2. Literature review 

 
Using a non-parametric approach, Färe et al. (1994) analyze productivity growth in 17 

OECD countries over the period of 1979−1988. Their productivity indexes are decomposed of 

two components, namely, technical changes and efficiency changes, the latter being interpreted 

as a catching-up effect. Relaxing the constant returns to scale (CRS) assumption for the 

technology, they further separate the catching-up effect into two terms: one representing a pure 

technical efficiency change and the other measuring changes in scale efficiency. The authors 

find that U.S. productivity growth is a little higher than average, while Japan obtains the highest 

productivity growth rate. Sena (2004) discovers spillover effects of high-tech companies on 

non-high-tech ones in Italy using the Malmquist index. Hoang and Coelli (2011) study the 

agricultural TFP among 30 OECD countries during 1990-2003 and they argue that the 

environmental efficiency and productivity can be improved by changing input combinations. 

Empirical research on TFP growth is also available for developing or newly 

industrialized regions and countries. For instance, Young (1992, 1994, and 1995) and Kim and 

Lau (1994) study sources of development for the East Asian economies and find a limited role 

of TFP growth. Interpreting the above results, Krugman (1994) concludes that East Asian 
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growth has been primarily due to factor accumulation. In opposition to this view, Collins and 

Bosworth (1997) and Klenow and Rodriguez (1997) evaluate a more significant contribution 

of TFP growth for some East Asian economies such as that of Singapore. These last conclusions 

emphasize the role of the assimilation of new technology to explain the growth of the East 

Asian countries and are in line with the interaction between technological adoption and capital 

accumulation leading to TFP growth.  

Kumar and Russell (2002) re-examine the catching-up mechanism with a methodology 

which requires no a priori functional form on the world production frontier, nor any assumption 

about market structure. In addition, it does not specify a particular nation as the world leader, 

allowing for technical and/or allocative inefficiencies to arise from differences in the countries’ 

abilities to use available technology. They test for the catching-up hypothesis across 57 poor 

and rich nations, using labor productivity indexes calculated with a nonparametric method. To 

analyze the evolution of the cross-country distribution of labor productivity, they focus on 

differences in levels of technology, technological changes over time, and how much of income 

convergence is due to technological diffusion or to convergence in capital/labor ratios. Their 

results conclude that there is evidence of technological catch-up, as countries have on the whole 

moved toward the world production frontier, non-neutrality of technological change and a 

predominance of capital deepening as opposed to the technological catch-up that contributes to 

both growth and income divergence of economies. However, these previous studies concerning 

TFP growth or TFP convergence still have room for improvement.  

Firstly, the initial literature ignores undesirable outputs (such as carbon emissions) in 

the production process that cannot provide the basis for sustainable economic development. 

More recently, Yörük and Zaim (2005) evaluate productivity growth in 28 OECD countries 

over the period of 1983−1998 by comparing the Malmquist index and Malmquist-Luenberger 

productivity indicator. They incorporate carbon dioxide, nitrogen oxide, and organic water into 



 6 

the Malmquist-Luenberger indicator, and their results show that the productivity growth is 

undervalued if we do not consider forms of pollution. Mahlberg et al. (2011) estimate eco-

productivity with the Malmquist indicator for 14 countries from the European Union over the 

period of 1995−2004. They include greenhouse gas as an undesirable output by dealing with it 

as a form of input constraint. They argue that growth of the ecological Malmquist productivity 

index is more motivated by environmental improvements. Furthermore, Mahlberg and Sahoo 

(2011) analyze environmental productivity for 22 OECD countries by developing a non-radial 

decomposition of the Luenberger productivity indicator. They separate productivity change into 

efficiency change and technology progress where productivity growth mainly depends on the 

latter. Ananda and Hampf (2015) argue that the influence of including undesirable outputs in 

productivity measurement is significant.  

Secondly, even if more recent papers take into account pollution emissions, one group 

of them model bad outputs as traditional inputs based on data transformation (e.g. Lovell et al., 

1995, Athanassopoulos and Thanassoulis, 1995; Seiford and Zhu, 2002; Wu et al., 2013). 

However, considering bad outputs as inputs may not reflect the real mechanism inside the 

production activity, and it is inconsistent with physical law and as such data transformation 

cannot be reasonably interpreted (Färe and Grosskopf, 2004).  

Alternative way is to impose an additional axiom on production possibility sets, namely 

the weak disposability assumption (Shephard, 1970). This approach has been widely applied in 

the literature based on the contribution of Färe et al. (1989). Nevertheless, there is still a debate 

concerning the sign of undesirable outputs’ shadow prices in this model (Hailu and Veeman, 

2001, 2003; Färe and Grosskopf, 2003). In the former approach, the sign of bad outputs’ shadow 

prices are not constrained and therefore can be considered as a cost or a revenue. From an 

economic point of view, undesirable outputs should be explicitly regarded as costs as argued 

by Hailu and Veeman (2003) or Leleu (2013). Berre et al. (2013) investigate the output shadow 
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price for dairy farms, and they find a positive revenue can be attached to nitrogen output if its 

price is not constrained. Therefore, a constrained model that provides an unambiguous 

economic interpretation is more appropriate. 

Thirdly, most literature emphasizes technical effect and technology progress at the 

national level but disregard the structural effect at the aggregate level for a group of countries 

such as OECD members. Even if all countries are efficient there is still room for improvement 

in productivity at the group level through a better coordination of input-output mixes. This 

argument results from the Debreu’s analysis on the coefficient of resource utilization (Debreu, 

1951). This idea of structural efficiency was implemented in Boussemart et al. (2015) for 

Chinese regions. We contribute to this literature by introducing the structural efficiency changes 

as a new component of a productivity indicator at the aggregate level of OECD countries. 

Distance functions are usually employed with the weak disposability assumption in 

seeking a benchmark in terms of desirable and undesirable outputs. Zhou et al. (2014) 

summarize three main types of distance functions which are commonly used through DEA 

estimations: Shephard input, Shephard output, and directional distance functions. In these 

models, undesirable outputs, such as carbon emissions, pollutants, and noise are explicitly 

considered by-products joined to the desirable output. Undesirable outputs should not be 

considered as freely disposable; hence, the weak disposability defined by Shepard (1970) and 

Shephard and Färe (1974) provide an alternative way of modeling inputs and outputs. The two 

key assumptions, namely weak disposability and null-jointness, are usually used together to 

incorporate undesirable and desirable outputs. The former implies that the abatement of 

undesirable outputs will be inevitable in affecting the production of desirable outputs, while the 

latter explains that the only solution to producing pollution is to not produce at all.  

Chung et al. (1997) suggest a directional distance function to estimate productivity 

changes in the Swedish pulp and paper industry from 1986−1990. Färe et al. (2005) measure 
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the technical efficiency of 209 electric utilities from 1993−1997 by employing a quadratic 

directional output distance function. They use SO2 as an undesirable output and their results 

show that SO2 emissions can be abated by 4000–6000 tons, and, as a result, the shadow price 

of SO2 rises during the sample period. 

Kumar (2006) measures the Malmquist-Luenberger productivity indicator in 41 

developed and developing countries from 1971−1992, using the directional distance functions 

and decomposing productivity gains into technical and efficiency changes. Kumar finds that 

the environmental productivity indicator value is the same as when carbon emissions are freely 

disposable. However, his results also show the two components of productivity change, 

technical change and efficiency change, are not the same in the two measures. 

Lin et al. (2013) measure environmental productivity in 70 countries from 1981−2007. 

They incorporate undesirable output, namely carbon emissions, and find differences in green 

productivity growth across sample countries, using the directional distance function. They 

compute the Malmquist productivity index and decompose it into technical efficiency change, 

technical change, and scale efficiency change. Their results show that developing countries 

achieve higher growth in their average environmental productivity relative to the convergence 

growth theory. 

Woo et al. (2015) examine the environmental efficiency of renewable energy in 31 

OECD countries by using the DEA approach and the Malmquist productivity index from 

2004−2011. Their results show a geographical difference in environmental efficiency across 

the OECD. The group of OECD America has the highest average environmental efficiency, and 

the group of OECD Europe has the largest standard deviation. They find that global financial 

crisis affects efficiency change in the United States. 

These papers have different features; most of the papers are based on the Malmquist 

productivity index, while some of the research employs the Luenberger productivity indicator. 
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Boussemart et al. (2003) argue that the Luenberger productivity indicator is more general than 

the Malmquist productivity index. In addition, the Malmquist-Luenberger indicator is also a 

popular research tool which is proposed by Chung et al. (1997). Its core concept is to use the 

ratio-based decomposition of the Malmquist index but to replace the Shephard’s distance 

function with a directional one. We further propose an alternative way to model the directional 

distance function that shows a relevant property of aggregation. In papers cited above, the 

direction vector is specific to each evaluated country and as a result efficiency scores or 

productivity indicators cannot be added across countries. In our case, a same direction is chosen 

for all countries, defined as the aggregate input-output vector. Therefore, efficiency change of 

a group of countries is simply the sum of individual efficiency changes.  

 

3. Methodology 

 
3.1 Weakly disposable technology and directional distance functions 

Among methodologies for dealing with undesirable outputs in production activity, two 

main alternative approaches are available in the literature. First, bad output can be modelled as 

an input in order to minimize its quantity at the optimum. A quite similar way is to convert bad 

output through various data transformations. Second, additional economic axioms can be 

introduced on the production possibility set, such as the weak disposability assumption. The 

latter considers the jointness of desirable outputs with undesirable outputs such as the only way 

to efficiently reduce bad outputs is to produce less good outputs. In that sense bad outputs are 

not freely disposed. Moreover, we can also consider that good output cannot be produced 

without generating bad one. 

 

Using Shephard’s definition of weakly disposable technology (Färe and Grosskopf, 

2003), let 1( ,..., ) N
Nx x R� �x denote the vector of the inputs and 1( ,..., ) M

Mv v R� �v and 
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1( ,..., ) J
Jw w R� �w  denote the vectors of the desirable (good) and undesirable (bad) outputs, 

respectively. The technology and corresponding output set are denoted by T and P: 

^ `( ) :  can produce ( )T  x, v,w x v,w   (1) 

^ `( ) ( : ( )P T �x v,w) x, v,w    (2) 

Two classical conditions namely weak disposability as introduced by Shephard (1970) and null-

jointness proposed by Shephard and Färe (1974) are most often used in modeling good and bad 

outputs. The assumption of weak disposability (3) allows a proportional evolution between 

good and bad outputs by introducing abatement factor T . The null-joint condition (4) requires 

that we cannot produce desirable outputs without generating undesirable outputs: 

If ( ) ( )P�v,w x and 0 1Td d  then ( ) ( )PT T �v, w x  (3) 

If ( ) ( )P�v,w x and v = 0  then w = 0    (4) 

The directional distance function measures the distance between the observed 

production plans and the frontier and can be interpreted as inefficiency. The directional distance 

function is defined as follows: 

^ `( ) sup : ( ) ,T v w v wD T
G

G G G� �� �x, v,w; g ,g x , v + g ,w - g   (5) 

where ( )v wg , g is a nonzero vector that means simultaneous adjustments of both desirable and 

undesirable outputs and G is the inefficiency score. Besides the static scores, the intertemporal 

evolution of shifting in technology can be measured by relevant productivity indicators. 

3.2. The Luenberger productivity indicator and its decompositions 

Chambers (2002) introduce the Luenberger productivity indicator based on the 

directional distance functions proposed by Luenberger (1992). We can define the technology at 

period t:  

^ `( ) :  can produce ( , )t t t t t t tT  x , v ,w x v w   (6) 
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The directional distance function is therefore defined as follows: 

^ `( ) sup : ( , , ) ,
t

t t t t t t t t t t t t t t t
T v wD T

G
G G G� �� � � �v wx , v ,w ;g ,g x v g w g   (7) 

Following Chambers (2002), the Luenberger Productivity Indicator (LPI) over the time period 

t and t+1 can be traditionally decomposed for a country as follows: 

, 1 , 1 , 1

, 1 1 1 1 1 1

1 1 1 1 1 1 1

, 1 1 1 1 1

where:
1 [ ( ; , ) ( ; , )
2

( ) ( ; , )]

( ; , ) ( ;

t t t t t t

t t t t t t t t t t t t t t
v w v w

t t t t t t t t t t t t
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t t t t t t t t t t t t
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EC D D
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 �
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 �

v w

x , v ,w g g x , v ,w g g

x , v ,w ;g ,g x , v ,w g g

x , v ,w g g x , v ,w g 1 1

, 1 1

1 1 1 1 1 1 1 1 1 1 1

, )

1 [ ( ) ( )
2

( ) ( ; , )]

t t
v w

t t t t t t t t t t t t t t

t t t t t t t t t t t t
v w

TP D D

D D

� �

� �

� � � � � � � � � � �

 � �

�

v w v w

v w

g

x , v ,w ;g ,g x , v ,w ;g ,g

x , v ,w ;g ,g x , v ,w g g

 (8) 

The LPI components computed through equation 8 are expressed in additive form which 

can be directly interpreted as growth rates and approximate the logarithms of productivity 

indicators1. The LPI indicator at a national level is the sum of efficiency change (EC) and 

technology progress (TP). Although this decomposition captures EC and TP at individual 

levels, it still ignores the structural effect for the whole group of countries at the aggregate level.  

More precisely, as illustrated in Figure 1, we can see the case of countries A and B 

which are technically efficient at individual plan levels, but are inefficient at the aggregate plan 

level (A+B). This component, namely structural inefficiency, is due to the heterogeneity of 

input allocations between countries A and B and the convexity of the isoquant curve. This lack 

of coordination can be seen as a market inefficiency. As a result, variations of the output and 

input mix among countries over time, impacting productivity growth of the aggregate 

                                                           
1 We avoid to use the terminology “TFP” for the Luenberger Productivity Indicator. As discussed by O’Donnell 
(2012), the Malmquist index and Luenberger indicator cannot be always defined as a ratio of an aggregate output 
to an aggregate input, the usual definition of a TFP index.  
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production plan via structural inefficiency changes. The more the countries converge to similar 

output and input mixes, the less important is the inefficiency of the aggregate production plan. 

As a result, the productivity level at the whole group level increases. This effect is of particular 

importance for the impact on the environment on a worldwide level. 

 

Figure 1 about here 

 

Instead of using a radial measurement in directional distance function, we employ the 

aggregate output vector as this direction: 
1 1

( , ) ( , )
K K

t t t t
v w k k

k k  

 ¦ ¦g g v w  using a CRS technology to 

estimate the technical inefficiency at a group level of K countries. Notice that this direction is 

common for all evaluated countries and enables to sum efficiency scores now based on the same 

unit of measurement. As mentioned before, technical inefficiency for an aggregation of 

countries takes into account a structural component, but also includes eventual technical 

inefficiency observed for individual countries. This aggregate inefficiency is defined as the 

overall inefficiency which can be split into two components: technical inefficiency which is the 

sum of individual countries’ technical inefficiencies and structural inefficiency. According to 

the chosen direction, these inefficiency scores are expressed in percentages of the total group 

output. 

The overall efficiency change (OE) reveals the evolution between overall inefficiency 

scores in periods t and t+1. Therefore, the LPI at an aggregate level based on a CRS technology 

can be defined as the sum of OE and TP: 
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, 1 , 1 , 1
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(9) 

Furthermore, OE can be continually decomposed into a technical efficiency change (TE) 

and a structural efficiency change (SE). TE is the time-variation of the individual technical 

inefficiency scores, while SE captures the change of the structural component over time. This 

latter effect is operationally deduced through the difference of the two previous components:  

, 1 1 1 1 1 1 1

1 1 1 1 1 1

, 1 1 1 1 1 1 1

1
, 1 , 1 , 1

( ; , ) ( ; , )

( ; , ) ( ; , )

K K K K K K
t t t t t t t t t t t t t t

k k k v w k k k v w
k k k k k k

K
t t t t t t t t t t t t t t

k k k v w k k k v w
o

t t t t t t

OE D D

TE D D

SE OE TE
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� � � � � � �
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 �

ª º �¬ ¼
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¦ ¦ ¦ ¦ ¦ ¦

¦

x , v , w g g x , v , w g g

x , v ,w g g x , v ,w g g (10) 

Finally, one can estimate productivity growth for the whole group as the result of the 

three components’ changes over time:  

, 1 , 1 , 1 , 1t t t t t t t tLPI TE SE TP� � � � � �  (11) 

 

3.3. Estimations of the LPI components by linear programing for primal and dual DEA models 

Each component of , 1t tLPI �  can be estimated by a linear program (LP). The primal 

directional distance function at the individual level is figured by the following linear program: 
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Primal directional distance function under an individual technology 
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  (LP0) 

where O  is the vector of intensity variables, and G  is a scalar measuring maximum expansions 

in good outputs and reductions in bad outputs in period t for the evaluated DMU k’ among all 

DMUs k. The optimal score G  is expressed as a percentage of the chosen direction vector g .  

LP0 is a traditional DEA model under a CRS technology that satisfies free disposability 

of the inputs and good outputs, as well as weak disposability for outputs. In this approach, the 

shadow price of bad output can be positive or negative. Since we consider that pollution is 

always a societal cost, we explicitly impose a negative shadow price on undesirable output by 

changing the equal sign in LP0 to inequality sign “d ” in LP1. 

Primal directional distance function under an individual technology 
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In LP1, we can obtain the technical inefficiency for country k’. In order to acquire the overall 

inefficiency at the aggregate level, the following LP2 is demonstrated: 

Primal directional distance function under an aggregate technology 
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Thus, the structural inefficiency at the aggregate level can be derived from the difference 

between overall inefficiency (LP2) and the summation of technical inefficiency (LP1) (Briec et 

al., 2003; Färe and Zelenyuk, 2003). This difference exists when we are dealing with quantity 

and technical inefficiency but disappears when price and profit function are used as proved by 

Koopmans (1957). Intuitively, the exact aggregation holds for a profit function which is linear 

in price and quantity terms while it is not the case for a convex technology. 

Alternatively, the overall inefficiency can be computed from LP3 which is the dual of 

LP2. 

Dual directional distance function under an aggregate technology 

, , ,, ,1 1 1 1 1 1 1 1 1

, , ,
1 1 1

, ,
1 1

( ; ) min ( )

. . 0 1, ,

1

0

v w x

K K K M K J K N K
t t t t v t w t v t

k k k m m k j j k n n k
k k k m k j k n k

M J N
v t w t v t
m m k j j k n n k

m j n

M J
v t w t
m v m j w j

m j

v
m

D v w x

s t v w x k K

g g

m

S S S
S S S

S S S

S S

S

         

   

  

 � �

� � t �  

�  

t �  

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦

¦ ¦ ¦

¦ ¦

t t
v wx , v , w g ,g

1,...,

0 1,...,

0 1,...,

w
j

x
n

M
j J

n N

S

S

t �  

t �  

 (LP3) 

where vS , wS  and xS  represent shadow prices of good outputs, bad outputs and inputs 

respectively. 
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The main interest of LP3 is to get the contribution of each country to the overall 

inefficiency. Then, we can obtain the overall and structural inefficiencies for each individual 

country k as follows: 
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We also provide models without incorporating undesirable output to compare green 

productivity indicators with traditional productivity indicators through disabling the 

corresponding constraints of undesirable outputs in relevant primal and dual models. For 

instance, LP4 is correspondent to LP1 by dropping the constraint of undesirable outputs. 
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4. Data and results  

 
4.1. Data  

The database is from the Penn World Table and the International Energy Agency. This 

data covers 30 OECD countries including three groups from 1971−2011: OECD Americas (4 

countries: Canada, Chile, Mexico, and the United States), OECD Asia-Oceania (5 countries: 

Australia, Israel, Japan, the Republic of Korea, and New Zealand), and OECD Europe (21 

countries: Austria, Belgium, Switzerland, Germany, Denmark, Spain, Finland, France, the 

United Kingdom, Greece, Hungary, Ireland, Iceland, Italy, Luxembourg, Netherlands, Norway, 

Poland, Portugal, Sweden, and Turkey). The remaining 4 OECD countries (the Czech Republic, 
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Estonia, the Slovak Republic, and Slovenia) are not included due to the lack of available data. 

We use two inputs, one desirable output, and one undesirable output: namely, capital stock, 

labor force, real GDP, and carbon dioxide emission, respectively. The capital stock uses the 

perpetual inventory method at current purchasing power parities in millions of 2005 US dollars. 

The labor force is the number of persons employed among 30 OECD countries in millions. The 

real GDP is output-side at current purchasing power parities in millions of 2005 US dollars. 

These three inputs and one good output are from the Penn World Table 8.1 (Feenstra et al., 

2015) provided by the University of Groningen. The bad output (carbon emission) is based on 

a sectoral approach from fuel combustion in millions of tons (International Energy Agency, 

2014). 

Table 1 shows the average growth rates of inputs and outputs. From Table 1, we find 

that the GDP growth is driven by OECD Asia-Oceania which also maintains the highest 

increasing rates in capital stock (5.12%) and carbon emissions (2.10%). OECD Americas 

attracts a greater work force which maintains the highest growth rate at 1.72%. OECD Europe 

has the lowest trend in carbon emissions (only 0.07%). In Figure 2, the negative trend of carbon 

emissions per unit of GDP (-2.25%, average changes over time) suggests that low-carbon 

requirements of the production process improve environmental performance in the OECD.  

 

Table 1 about here 

Figure 2 about here 

 

4.2. Results and discussion 

Technical inefficiency measures gaps between the observed production plans and their 

best practices, while structural inefficiency components are estimated through differences 

between overall and technical inefficiency scores. Their evolution over time is displayed in 
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Figures 3, 4, and 5, respectively. OECD Europe accounts for the main technical inefficiency 

before OECD Americas catches up to that level in 2004. OECD Americas dominates the 

primary parts of structural inefficiencies from 1997−2009 which leads to a falling trend in 

structural efficiency change for the all the OECD countries. For OECD Asia-Oceania, their 

evolutions of technical and structural inefficiencies are both relatively stable compared to the 

other two groups. We notice that structural inefficiency scores of OECD Europe show an 

increasing tendency after 2008 during the period of the European debt crisis. However, we note 

that OECD Asia-Oceania has no similar progress in structural inefficiency scores during the 

period of the Asian financial crisis starting in 1997. Woo et al. (2015) argue that environmental 

efficiency is affected by global financial crisis. In our results, we cannot confirm whether the 

structural inefficiency is directly related to the relevant financial crisis. From Figures 3, 4, and 

5, we also detect a significant inefficiency fluctuation for OECD Americas which is mainly 

caused by the United States during the period of 1998−2009 which is no longer a benchmark. 

Because the weight of the United States in the total sample is huge compared to the other 

individual countries, its directional inefficiency scores are therefore high and impact 

significantly on the score evolutions of OECD America.  

 

Figure 3 about here 

Figure 4 about here 

Figure 5 about here 

 

In Figure 6, our empirical results show that the technical efficiency component of the 

productivity indicators keeps a growth rate at around 0.1% from 1975−2000, and then it shows 
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a declining trend and reaches the bottom in 20052. In Figure 7, the structural efficiencies in 30 

OECD countries show an increasing trend from 1973−1993 and a declining movement from 

1993−2008.  

 

Figure 6 about here 

Figure 7 about here 

 

Although these significant declines arise in the technical efficiency and structural 

efficiency in the late stage of the period, the green productivity maintains an increasing trend 

at all times, which is attributed to a weighty rise in technology progress as shown in Figure 8 

and Figure 9. This is consistent with the empirical results of Mahlberg and Sahoo (2011) who 

argue that productivity growth in most of OECD countries during the period of 1995−2004 is 

dependent on their technology progress only. Our results also reveal the lowest fluctuations for 

the productivity indicator and its three components (technical efficiency, structural efficiency, 

and technology progress) when undesirable outputs are explicitly included in the referent 

technology. In Figure 9, the trend of LPI with undesirable output is 0.82%, which indicates that 

the productive performance of the OECD group is underestimated by the traditional approach 

if carbon emissions are ignored (0.49%). Similarly, Yörük and Zaim (2005) argue that the 

Malmquist indexes undervalue the Luenberger indicators for the OECD countries from 

1983−1998. The green productivity growth can be attributed to improved environmental and 

technological situations in the OECD, which is consistent with Mahlberg et al.’s conclusions 

(2011). One can note a substantial decrease after 2007 in the traditional productivity indicator, 

while the green productivity maintains a more or less flat trend. This productivity gap may be 

                                                           
2 The Luenberger indicator measures the growth rate of productivity evolution between two periods. Therefore, 
the cumulative series presented in figures 6 to 9 are directly interpreted as series in logarithm terms without any 
logarithmic transformations. 



 20 

due to the correlation between carbon emissions and GDP downturns, which, in the end, do not 

significantly impact the green LPI but do negatively affect traditional productivity through a 

decline of the good output.  

 

Figure 8 about here 

Figure 9 about here 

 

 

 

5. Conclusions and further work 

 

We attempt to employ a Luenberger productivity indicator incorporating carbon 

emission into productivity measures for a group of 30 OECD countries. According to our 

empirical results, several conclusions can be drawn. 

(1) The traditional productivity indicator without considering carbon emissions underestimates 

that of green growth as a result of effective and efficient environmental protection policies in 

OECD countries during the sample period. Meanwhile, the green productivity indicator is 

maintained after the financial crisis in 2008, while the traditional measure shows a significant 

drop. This green productive performance is motivated by upgraded environmental situations in 

the OECD and could be evidence for rational thinking about the trade-off between economic 

growth and environmental cost. In our results, not only industrialized countries like United 

States and United Kingdom but some less industrialized countries also serve as the benchmark 

for OECD, such as Mexico, New Zealand. We argue that policy and decision makers should 

include environmental variables into measurements of economic performance such as 

productivity gains.  
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(2) Improvements of technical and structural efficiencies mainly contributed to the green 

productivity growth from 1971−2000, while technological progress contributes the remainder 

during the sample period. We claim that governments could develop suitable policies (e.g. 

Patent law) in favor of technological diffusion and adoption for transferring green technologies 

from leaders to followers. 

(3) Our results reveal the presence of substantial structural effects on productivity evolution for 

the OECD that have not previously been quantified. This structural component captures 

potential improvement space of productivity growth if OECD countries can converge to more 

homogeneous input or output mixes. We also notice that decreases in structural efficiency from 

1997−2009 are mostly dependent on a decline of that component for OECD Americas. The 

structural proxy can be accompanied by dynamic evolution of resource reallocation in the 

economic organization. We point out that countries can gain productivity growth by reducing 

structural inefficiency at a super-national level. International and intergovernmental 

organizations could establish favorable economic and environmental policies not only on a 

country level, but also on a super-national level (e.g. Kyoto Protocol). 

In this paper, most of sample countries are developed countries, and we cannot identify 

whether the productivity evolution of other developing countries is also motivated by their 

environmental conditions. To further determine the value of sustainable development and 

ecological innovations, possible future work could calculate green productivity growth and 

carbon abatement costs for additional groups of developed and developing countries. 

Intergovernmental cooperation plays an increasingly important role in global environmental 

governance, such as the Kyoto Protocol proposed by the United Nations Framework 

Convention on Climate Change in 1997. A positive correlation between environmental 

performance and carbon emission protocol has been detected by Yörük and Zaim (2005), and 

it seems essential in analyzing the potential influence of new international treaties and 
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intergovernmental negotiations. In that way, future researches could also be further extended at 

a worldwide level for countries engaged in treaties, such as the Copenhagen Accord or the 

Kyoto Protocol. 
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Table 1: Average growth rates of inputs and outputs (1971−2011)  

  

Regions Capital 

Stock 

Labor 

Force 

Real GDP CO2 

OECD Americas 3.19% 1.72% 2.93% 0.84% 

OECD Asia-Oceania 5.12% 0.95% 3.61% 2.10% 

OECD Europe 3.29% 0.55% 2.87% 0.07% 

Total OECD 3.57% 1.04% 3.02% 0.76% 
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Figure 1: Illustration of structural efficiency 
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Figure 2: Evolutions of input and output indexes for the OECD (in logarithm terms) 

 

 

Note: average changes over time are estimated by the slopes of trend lines 
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Figure 3: Technical inefficiency scores for groups 
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Figure 4: Structural inefficiency scores for groups 
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Figure 5: Overall inefficiency scores for groups 
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Figure 6: Technical efficiency indicator for the OECD (in logarithm terms) 
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Figure 7: Structural efficiency indicator for the OECD (in logarithm terms) 
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Figure 8: Technical progress indicator for the OECD (in logarithm terms) 
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Figure 9: Luenberger Productivity Indicator for the OECD (in logarithm terms) 

 

 

Note: average changes over time are estimated by the slopes of trend lines 

 

 

 


