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The impact of pollution abatement investments on

production technology: new insights from frontier

analysis

Abstract

This paper estimates the impact of pollution abatement investments on the production

technology of firms by pursuing two new directions. First, we take advantage of recent

econometric developments in productivity and e�ciency analysis and compare the results

obtained with two complementary approaches: parametric stochastic frontier analysis and

conditional nonparametric frontier analysis. Second, we focus not only on the average

e↵ect but also on its heterogeneity across firms and over time and search for potential

nonlinearities. We provide new results suggesting that such an e↵ect is heterogeneous

both within firms and over time and indicating that the e↵ect of pollution abatement

investments on the production process is not monotonic. These results have relevant

implications both for modeling and for the purposes of advice on environmentally friendly

policy.

Keywords: Pollution abatement investments, technology, stochastic frontier analysis,

conditional nonparametric frontier analysis, full and partial order frontiers, generalized

product kernels, infinite order cross-validated local polynomial regression.
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1 Introduction

Pollution clearly appears to be an undesirable output of production. Because producing cleanly

is more expensive than polluting, environmental regulation may be necessary in order to incite

firms to make investments devoted to pollution reduction and to pursue a sustainable process

of economic development. A standard view among economists is that environmental regulation

aiming to reduce pollution is a detrimental factor for firms’ competitiveness and productivity

(Jorgenson and Wilcoxen, 1990). Since the early 1990s, however, this view has been challenged

by numerous economists. In particular, Porter (1991) and Porter and Van der Linde (1995)

argued that more stringent but properly designed environmental regulations do not inevitably

hamper firms’ competitiveness but could enhance it. This new paradigm has become known

as the ‘Porter hypothesis’. Since then, such a hypothesis has received much attention. It was

initially criticized for its lack of an underlying theory (Palmer et al., 1995) and for being incon-

sistent with the empirical evidence (Ja↵e et al., 1995), while today a more solid theory exists

(André, 2015) but also mixed empirical evidence, so that the validity of the Porter hypothesis

continues to be one of the most contentious issues in the debate regarding environmental reg-

ulation. All this suggests that “further research is clearly needed in this area” (Ambec et al.,

2013, p. 10).

This paper aims to contribute to the literature by pursuing two new directions.

First, within a methodological perspective, we aim to assess the e↵ect of pollution abatement

investments on the production technology of firms by adopting methods that have been recently

developed by the econometric literature on productivity and e�ciency analysis and that leave

room for the consideration of external factors of production. External variables are generally

defined as variables that cannot, at least totally, be controlled by the producer but may have

an influence in the production process (Bădin et al., 2012). The available measures of firms’

e↵orts to reduce pollution, such as pollution abatement investments, can be seen as these kinds

of variables, as they are expected to be stimulated by environmental regulation and, at the

same time, to have some kind of e↵ect on the production technology of firms.

A second novel aspect of this paper is its modeling and policy-oriented perspective. Specif-

ically, we focus not only on the average e↵ect but also on its variability across firms and over

time and search for potential nonlinearities. These aspects have been recognized as extremely

relevant by the theoretical literature and have important implications, but until now, they have

been neglected by the existing empirical literature. Indeed, as already pointed out by previous

works (Ambec et al., 2013), the controversy over the Porter hypothesis centers on the likelihood

that the regulatory costs may be fully o↵set or not. The critics say that although some anec-

dotal empirical evidence in the direction suggested by Porter could be found, a complete o↵set

should be seen as the exception. Porter and van der Linde also admit that such a complete

o↵set does not always occur. Moreover, the linearity and monotonicity of the relation can also

be questioned, as “it is not reasonable to assume that the e↵ect of environmental regulation

is monotonic” (André, 2015, p. 29) since it could be that taking advantage of regulation will

become more di�cult if the stringency of environmental regulation will increase too much.
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In order to model pollution abatement investments as external factors of production and to

address the above issues, two complementary approaches are adopted in this paper: parametric

stochastic frontier analysis (SFA) and conditional nonparametric frontier analysis (CNFA).

They present relative advantages and drawbacks; comparing their results may be useful to

provide a more nuanced and thorough picture of the e↵ect of pollution abatement investments

on the production technology of firms. It may be also important to provide more robust results.

SFA has the relative advantage of having a well-developed statistical theory which allows for

statistical inference. Therefore, using SFA we can test alternative specifications as well as

di↵erent hypotheses on e�ciency. We can focus our attention on input elasticities, on their

heterogeneity across firms and on all the other estimated parameters of the production frontier

and get information on scale economies, e�ciency, etc. Conversely, CNFA has the relative

advantage over SFA that it does not make any assumptions, either about specific parametric

functional form for the production frontier or about distributional assumptions on the noise

and ine�ciency component, and may be useful to detect complex nonlinear relations. At the

same time, however, this flexibility comes at a price since CNFA does not allow the estimation

of some key elements of production econometrics (such as input elasticities, scale economies,

etc.) and inference is less straightforward than in SFA.

More specifically, concerning SFA, the most common approaches in the literature model the

impact of external factors either on the structure of the technology or on technical e�ciency

(Coelli et al., 1999). We follow and extend these trends and consider alternative models to

include pollution abatement investments in the production process and then use the Vuong

(1989) test in order to select the most likely one. When switching to CNFA, we use a two-step

approach similar to Mastromarco and Simar (2015) where at the first stage conditional non-

parametric e�ciency measures are obtained and are used as exploratory tools (Cazals et al.,

2002; Daraio and Simar, 2005; Bădin et al., 2012) and, at the second stage they are regressed

nonparametrically over pollution abatement capital. We follow recent advances in nonparamet-

ric kernel regression and depart from previous works since, at the second stage, we avoid ad hoc

determination of the local polynomial order by using the ‘infinite order cross-validated local

polynomial regression approach’ recently proposed by Hall and Racine (2015). This methods

allows – via delete-one cross-validation – the joint determination of the polynomial order and

bandwidth and this can have a relevant impact on the quality of the resulting approximation.

In summary, to the best of our knowledge, this is the first work estimating the e↵ect of

pollution abatement investments on the production technology of firms using methods that

model pollution abatement investments as external factors of production and, at the same

time, focusing on some aspects – such as heterogeneity and nonlinearity – that have been

shown to be relevant by the theoretical literature and have important implications for firms

and society as a whole in terms of advice on environmentally friendly policy.

The present paper is organized as follows. Section 2 gives a brief review of the related

literature. Section 3 presents the econometric methodologies while the description of the data

and some descriptive statistics are provided in section 4. Section 5 details the results and

section 6 concludes.

4



2 Literature

In this section, we present the general ideas and the di↵erent versions of the Porter hypoth-

esis. We also briefly review the theoretical literature, specifically highlighting the economic

mechanisms allowing for a possible positive relation between pollution abatement investments

and firm-level productivity. For a more exhaustive discussion on both theory and empirics, the

reader is referred to the recent surveys by Ambec et al. (2013) and André (2015).

According to a standard view among economists, at least until the 1990s, pollution abate-

ment e↵ort due to environmental regulation may be beneficial in terms of environmental per-

formance but would negatively a↵ect firms’ economic performances since it forces them to

allocate the production inputs to pollution reduction, pushing them away from optimal pro-

duction choices and thus inducing technological and allocative ine�ciency.

Since the early 1990s, however, this traditional paradigm has been challenged by what has

become known as the ‘Porter hypothesis’ (Porter, 1991; Porter and Van der Linde, 1995).

Porter and Van der Linde (1995, p. 98) suggest that “Strict environmental regulation can

trigger innovation (broadly defined) that may partially or more than fully o↵set the traditional

costs of regulation”.

Since then, the Porter hypothesis has attracted a great deal of attention, theoretically as

well as empirically. However, a di�culty that arises when addressing such a hypothesis is

clarifying its interpretation, as the Porter hypothesis is not a hypothesis in a statistical sense

but it represents a general idea illustrated with real-life examples and, at least in its original

formulation, lacked an underlying theory (Palmer et al., 1995). Ja↵e and Palmer (1997) help in

the interpretation of the Porter hypothesis by distinguishing between the ‘weak’, ‘narrow’ and

‘strong’ versions of such a hypothesis. According to the weak version, environmental regulation

may stimulate innovation, while the narrow version argues that certain types of environmental

regulation, but not all, spur innovation. This idea that regulation can stimulate innovation

is based on the concept of induced innovation and goes back to Hicks (1932). It is generally

accepted and has been validated by many previous studies, even those specifically about envi-

ronmental regulation. The core of the controversy lies in the strong version, which argues that

in many cases this innovation more than o↵sets the regulatory costs, ultimately enhancing

firms’ competitiveness and economic performances. From a theoretical point of view, after

some initial criticisms (Palmer et al., 1995), the literature has provided alternative explana-

tions supporting the strong version, such as firms’ behaviors departing from the assumption of

profit maximization (Ambec and Barla, 2007), market failure (André et al., 2009), organization

failure (Ambec and Barla, 2002), and knowledge spillovers (Mohr, 2002).

It should also be noted that while Porter and van der Linde claim that firms become

“more competitive”, the concept of competitiveness is quite general and allows for alternative

measurements. As a consequence, the above-mentioned theoretical works have considered

alternatives measures of competitiveness such as cost reduction, increased profits or higher

market shares. At the same time, however, empirical research has focused on the estimation

of production functions or productivity equations. Somewhat more closely related to this
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empirical literature, Mohr (2002) emphasizes productivity increases and justifies the Porter

hypothesis by adopting a general equilibrium model where a key role is played by external

economies and in particular the nature of knowledge as a public good. According to such a

model, firms’ output benefits from knowledge spillovers. The amount of this common knowledge

is equal to the cumulative production experience of all firms using the same technology. Thus,

a specific firm will switch to a new (greener) technology only if enough other firms have done

it first. This is because, even if new and greener technology will be, ceteris paribus, more

productive, at least initially there is much more accumulated experience in the old technology

than in the new one and, as a consequence, the productivity of the new technology will be lower

than that of the old one. Environmental regulation can thus solve the coordination problem,

inciting firms to adopt the greener technology, which will increase the global stock of knowledge

of the new technology, and ultimately lead to an improvement in the level of productivity of

those firms.

3 Methodology

There is a huge body of empirical literature testing the strong version of the Porter hypothesis,

but it provides rather mixed empirical evidence (Ambec et al., 2013). This literature focuses

on the estimation of production functions or productivity equations augmented with some

measures of pollution abatement e↵orts. We follow the stream of the literature using a direct

measure of the expenditures or investments engaged by the firms (see e.g., Shadbegian et al.,

2005) and estimate value-added production frontiers where the pollution abatement e↵orts are

measured with the stock of capital devoted to pollution reduction (a detailed description of the

data is in section 4).

The methodology we use departs from previous studies in that it is inspired by recent

developments in the econometric literature on productivity and e�ciency analysis that allow

the consideration of external factors of production. SFA and CNFA provide useful frameworks

for dealing with this issue. This section shows how these two approaches can be used to model

the impact of pollution abatement capital on the production process.

3.1 Stochastic frontier analysis

The most common approaches in the SFA literature model the impact of external factors either

on the structure of the technology or on technical e�ciency (Kumbhakar and Lovell, 2000).

We follow and extend these trends and consider two alternative models to include pollution

abatement capital in the production process.
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Input model

In a first model, which we label as the input model, we assume that pollution abatement cap-

ital influences the production process itself, or, put di↵erently, enters the production function,

F (.), as an additional factor of production in the stochastic production frontier model

Yit = F (t,Kit, Lit, Zit)⌧itwit. (1)

The output of a firm i at time t, Yit, is thus assumed to be determined not only by the levels

of usual inputs, i.e. labor input, Lit, and physical capital, Kit, but also by pollution abatement

capital, Zit. The time trend t captures technological change over time and we do not assume

Hicks-neutrality. The wit, which are assumed to be independent and identically distributed

random errors, capture the stochastic nature of the production frontier. ⌧it denotes technical

e�ciency with 0 < ⌧it  1 and ⌧it = 1 when the firm produces on the frontier.

The stochastic production frontier model in Eq. (1) is parameterized using a translog

specification achieving local flexibility (also called Diewert flexibility, see e.g., Fuss et al., 1978)

and outperforming other Diewert-flexible forms (Guilkey et al., 1983):

yit = ↵ + �⌧ t+ �kkit + �llit + �zzit + �⌧
t2

2
+ �k

k2
it

2
+ �l

l2it
2
+ �z

z2it
2

+

+�⌧ktkit + �⌧ ltlit + �⌧ztzit + �klkitlit + �kzkitzit + �lzlitzit � uit + vit (2)

where lower case letters indicate variables in natural logs, i.e. yit = ln(Yit), and so on. It is

worth noting that this specification is more general than the one chosen by Coelli et al. (1999)

which restricts the e↵ect of external factors only to the shape of the technology by imposing

�z = �⌧z = �kz = �lz = 0 in Eq. (2). Put di↵erently, we do not exclude the case where

pollution abatement capital a↵ects the technology of the firms as an input under the control

of the firm manager choosing the optimal level of pollution abatement investments given some

external constraints (such as environmental regulation) and within its maximization program.

The error term in Eq. (2) is composed of two components, the two-sided noise component

vit = ln(wit) and the non-negative technical ine�ciency component uit = � ln(⌧it). The noise

component, vit, is assumed to be independently and identically distributed as N(0, �2
v) and

distributed independently of uit. The technical ine�ciency component, uit, is assumed to be

time-varying. Two di↵erent assumptions about the distribution of this component can then be

made. First, we can assume that the technical ine�ciency component is of the multiplicative

form:

uit = `(t, T )⇥ ui

where ui is distributed as N (µ, �2
u) truncated at zero and `(t, T ) is written as

`(t, T ) = exp(
TX

t=2

�tdt) (3)
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where dt denote year dummies.1 Hereafter we will refer to this specification as multiplicative.

A second specification for the ine�ciency component, which we label as additive, builds on

Battese and Coelli (1995) and Coelli et al. (1999) with uit distributed as N (µit, �2
u) truncated

at zero and

µit = µ+
TX

t=2

�tdt (4)

The two specifications of the technical ine�ciency component di↵er in the way they model

time-varying ine�ciency. In the multiplicative specification, the underlying truncated nor-

mal variable ui is scaled by the exponential function of time. The ine�ciency component in

this specification varies in a systematic way with respect to time. Greene (2005) defines this

specification of the ine�ciency component as “time-dependent” rather than as time-variant.

The other ine�ciency specification is a pooled model where the time variation of ine�ciency

depends on the way time a↵ects the mean of the truncated distributed variable uit.

E�ciency model

In the input model, pollution abatement capital is assumed to influence production directly,

by a↵ecting the structure of the production frontier relative to which the e�ciency of firms is

estimated. An alternative model associating variation in e�ciency with variation in pollution

abatement capital can be also considered. In this model, which is labeled as the e�ciency

model, Eq. (1) becomes

Yit = F (t,Kit, Lit)⌧it(Zit)wit. (5)

where we assume now that pollution abatement capital, Zit, influences production, Yit, indi-

rectly, through its e↵ect on technical e�ciency, ⌧it. The stochastic production frontier model

in Eq. (5) is parameterized using a flexible translog specification as

yit = ↵ + �⌧ t+ �kkit + �llit + �⌧
t2

2
+ �k

k2
it

2
+ �l

l2it
2
+ �⌧ktkit + �⌧ ltlit + �klkitlit � uit + vit (6)

Here too, the error term in Eq. (6) is composed of two components, the two-sided noise

component vit = ln(wit) and the non-negative technical ine�ciency component uit = � ln(⌧it).

We assume again that the noise component, vit, is independently and identically distributed as

N(0, �2
v) and distributed independently of uit. Two alternative specifications of the distribution

of the technical ine�ciency component, uit, are considered, a multiplicative one and an additive

one, as for the input model. But now, the multiplicative form of the ine�ciency component in

the multiplicative model becomes

uit = `(t, T, Zit)⇥ ui,

1By construction, a constant term in Eq. (3) capturing the e↵ect of the first year cannot be identified
simultaneously with the mean of the truncated normal so the value of the constant term is set to zero.
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where ui is distributed as N (µ, �2
u) truncated at zero and `(t, T, Zit) is written as

`(t, T, Zit) = exp(
TX

t=2

�tdt + ✓Zit), (7)

Meanwhile, the assumptions in the additive model become uit distributed as N (µit, �2
u) trun-

cated at zero and

µit = µ+
TX

t=2

�tdt + ✓Zit (8)

To sum up, we have four parametric models: input model with multiplicative ine�ciency

component, input model with additive ine�ciency component, e�ciency model with multi-

plicative ine�ciency component, and e�ciency model with additive ine�ciency component.

These four models are estimated by maximum likelihood. Since they are non nested, in order

to choose the preferred specification, we perform the modified likelihood-ratio test proposed

by Vuong (1989) to compare non-nested models.

3.2 Conditional Nonparametric Frontier Analysis

The parametric approach allows the estimation of some key parameters of production econo-

metrics, such as elasticities, scale economies, etc. However, even if a flexible form is used

to represent the production technology, such an approach might su↵er from misspecification

problems due to imposing a specific functional form on the production process and assuming

known statistical distributions on the errors terms.2 The use of nonparametric methods serves

to relax these restrictive parametric assumptions, even if these methods do not allow the es-

timation of parameters for economic interpretation. Moreover, using recent developments in

nonparametric frontier literature (Cazals et al., 2002; Daraio and Simar, 2005 and 2007; Bădin

et al., 2012, Mastromarco and Simar, 2015), it is possible to disentangle the potential e↵ects

of conditioning variables (in our case, pollution abatement capital) to identify e↵ects on the

boundary (the shape of the frontier) and e↵ects on the distribution of the ine�ciencies in a

full nonparametric setup.

First step: Exploratory tools

We follow Cazals et al. (2002), Daraio and Simar (2005, 2007) and, mainly, Mastromarco

and Simar (2015) who introduce the time dimension into the conditional frontier model. The

production process generates random variables (X, Y, Z) in an appropriate probability space,

where X 2 Rp
+ denotes the vector of inputs, Y 2 Rq

+ denotes the vector of outputs, and Z 2 Rr
+

denotes the vector of variables describing external factors, i.e. factors that may influence the

production process and the e�ciency pattern (in our case, pollution abatement capital and

time). As suggested by Mastromarco and Simar (2015), time can be handled as a Z variable.

2For instance, Guilkey et al. (1983) have shown that the translog approximation outperforms other Diewert-
flexible forms such as the generalized Leontief and the generalized Cobb-Douglas, but also provides a reliable
approximation only if the complexity of the underlying technology is not too high.
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For each time period t, the attainable set  z ⇢ Rp+q
+ is defined as the support of the

conditional probability3

HX,Y |Z(x, y|z) = Prob (X  x, Y � y |Z = z) .

The functionHX,Y |Z (x, y|z) is simply the probability for a firm operating at level (x, y) to be

dominated by firms facing the same external conditions z. Accordingly, the conditional output-

oriented technical e�ciency of a production plan (x, y) 2  z, i.e. facing external conditions z,

can be defined as (Daraio and Simar, 2005)

⌧ (x, y|z) = sup {⌧ |(x, ⌧y) 2  z} = sup{⌧ |SY |X,Z(⌧y|x, z) > 0}.

where SY |X,Z(y|x, z) = Prob(Y � y|X  x, Z = z) is the (nonstandard) conditional survival

function of Y, nonstandard because the condition on X  x and not X = x.4

We also calculate partial frontiers, introduced by Daouia and Simar (2007), enabling us

to obtain results that are robust to some extreme observations. Conditional (unconditional)

output-oriented robust order-↵ quantile e�ciency measures are defined for any ↵ 2 (0, 1) as:5

⌧↵(x, y|z) = sup{⌧ |SY |X,Z(⌧y|x, z) > 1� ↵}

As stated in Bădin et al. (2012), the e↵ect of external factors on the shape of the fron-

tier can be investigated by considering the ratios of conditional (⌧(x, y|z)) to unconditional

(⌧(x, y)) e�ciency measures, which are measures relative to the full frontier of respectively, the

conditional and the unconditional attainable production sets:

RO(x, y|z) =
⌧(x, y|z)
⌧(x, y)

. (9)

By construction, RO(x, y|z)  1, whatever the triplet (x, y, z). In turn, the e↵ect of exter-

nal factors on the distribution of technical e�ciencies can be investigated using the ratios of

conditional to unconditional output-oriented robust order-↵ quantile e�ciency measures for

3From now on, we use capital letters for random variables and lowercase letters for the values these random
variables take.

4Let HX,Y (x, y) denote the unconditional probability of being dominated. Then we have

HX,Y (x, y) =

Z

Z
HX,Y |Z (x, y|z) fZ(z)dz

having support  , the unconditional attainable production set which is defined as  =
S

z2Z  
z. It is clear

that, by construction,  Z ⇢  . Unconditional output-oriented technical e�ciency of a production plan (x, y),
can then be defined as

⌧(x, y) = sup{⌧ |(x, ⌧y) 2  } = sup{⌧ |SY |X(⌧y|x) > 0},

where SY |X(y|x) = Prob(Y � y|X  x) is the unconditional survival function of Y given that X  x. Here
too, it is clear that, by construction, ⌧ (x, y|z)  ⌧(x, y).

5The unconditional measures are: ⌧↵(x, y) = sup{⌧ |SY |X(⌧y|x) > 1� ↵}.
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di↵erent values of ↵, i.e

RO,↵(x, y|z) =
⌧↵(x, y|z)
⌧↵(x, y)

. (10)

Here the ratios RO,↵(x, y|z) can be either  1 or � 1. But as ↵ ! 1, RO,↵(x, y|z) ! RO(x, y|z)
For the output orientation, when the ratios (9) are globally increasing with an external

factor, this indicates a favorable e↵ect on the production process, and the external factor can

be considered as a freely available input. Indeed, the value of ⌧(x, y|z) is much smaller (greater

e�ciency) than ⌧(x, y) for small values of the factor than for large values of it. In our case with

Z as pollution abatement capital, this may be explained by the fact that firms facing small

values of the external factor do not take advantage of the favorable environment, and when the

value of the external factor increases, they benefit more and more from the environment. On

the contrary, when the ratios (9) are globally decreasing with the external factor, there is an

unfavorable e↵ect of this factor on the production process. The external factor is then acting

as an unavoidable output. In this situation ⌧(x, y|z) will be much smaller than ⌧(x, y) for large

values of the external factor.

As explained in Bădin et al. (2012), the full frontier ratios (9) indicate only the e↵ects of

external factors on the shape of the frontier, whereas with the partial frontier ratios (10), these

e↵ects may combine e↵ects on the shape of the frontier and e↵ects on the conditional distri-

bution of the ine�ciencies. For our purpose of analyzing the impact of Z on the distribution

of e�ciencies, we are interested in the median, by choosing ↵ = 0.50. If the e↵ect on partial

frontier ratios is similar to the one shown with the ratios with full frontier, we can conclude

that we have a shift of the frontier while keeping the same distribution of the e�ciencies when

the external factor changes. If the e↵ect with the median (↵ = 0.5) is greater than for the full

frontier, this indicates that in addition to an e↵ect on the shape of the frontier, we also have

an e↵ect on the distribution of the e�ciencies.6

Nevertheless, the conclusions of the analysis of ratios should be taken with caution and

regarded only as exploratory. In fact, they are valid if the choice of inputs is independent of

the external factors. If not, the analysis of the ratios as a function of the external factors

should be conducted for fixed levels of the inputs. The interpretations given above as to the

impact of the external factors, which depends on the shape of the relation between the ratios

and the factors, remain valid, but for a fixed vector of inputs.

Second step: Nonparametric regression of the conditional e�ciency scores

To go further into the analysis of the impact of external factors, Bădin et al. (2012) propose

to analyze the average behavior of ⌧(x, y|z) as a function of z, in order to capture the main

e↵ect of the external factors on these conditional measures. We thus regress, in the second

stage, the conditional e�ciency scores ⌧(x, y|z) on pollution abatement capital and time. This

is motivated by the fact that the so-called ‘separability condition’ discussed in Simar and

Wilson (2007) likely does not hold. Indeed, under such a condition, neither time nor pollution

abatement capital influences the shape of the attainable set. But this appears very restrictive

6The full frontier corresponds to an extreme quantile, i.e. the maximum achievable output. See Figure 10,
in Bădin et al., (2012) for a detailed explanation of the di↵erent possible scenarii.
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and an unlikely event since if technical change occurs, the frontier of the attainable set will

change with time. In such a case, as suggested by Bădin et al. (2012), in the second stage

it is meaningful to analyze the average behavior of the conditional e�ciency scores ⌧(x, y|z)
- rather than the unconditional ones ⌧(x, y) - as a function of the external factors. Here too,

the conditional e�ciency scores ⌧(x, y|z) may also vary with both z and x. But now, we want

to capture the marginal e↵ect of Z on the e�ciency scores, so it is legitimate to analyze the

regression model E (⌧(x, y|z)|Z = z) as a function of z. Therefore, we focus attention on the

following nonparametric regression function:

⌧(x, y|z) = m(z) + "

where m(.) is un unknown smooth function to be estimated and " is the usual error term such

that E("|Z = z) = 0.

To estimate this model, we follow recent advances in nonparametric kernel regression and

depart from the above-mentioned works which estimate location-scale regression models with

the local constant approach, for two reasons. First and most important, we use the ‘infi-

nite order cross-validated local polynomial regression approach’ recently proposed by Hall and

Racine (2015) rather than adopting the local constant approach most often used in previous

works. The method proposed by Hall and Racine (2015) instead allows – via delete-one cross-

validation – the joint determination of the polynomial order and bandwidth, avoiding the ad

hoc determination of the polynomial order, which is the standard practice in applied works.

As also stressed by Hall and Racine (2015), the order of the polynomial can have a relevant im-

pact on the quality of the resulting approximation, while the appropriate order will in general

depend on the underlying and unknown DGP. Such a method allows improvements in both

finite sample e�ciency and in the rate of convergence, which for some common DGPs, is equal

to the parametric rate for the Oracle estimator, O(n�1/2). Second, we do not use the location-

scale regression model, i.e. when the error term can be expressed as " = �(z)". While in some

cases it could be of interest to adopt this model, in our specific case we do not focus on the

scale e↵ect, V (⌧(x, y|z)|Z = z), whereas the location e↵ect, E (⌧(x, y|z)|Z = z), is of primary

interest. If one wants to estimate the variance function �2(z) in the location-scale model, one

simply needs to regress nonparametrically the square of the residuals on the external factors.

4 Data

We build a new and rich firm-level panel data set concerning the French food processing indus-

tries and covering a relatively long period (1993-2007). The French food processing industry is

particularly relevant for such a kind of analysis because it is one of the most polluting sectors

with respect to several indicators - especially concerning the e↵ects of total final consumption

of the produced goods (European Environmental Agency, 2006) - and it is one of the sectors
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investing more in pollution abatement.7 It is finally also relevant in terms of size, representing

a large proportion of manufacturing in France (about 550,000 employees in 2011, i.e. 18% of

manufacturing employment).

Data for the French food processing industries on pollution abatement investments are

collected annually in a survey conducted by the French ministry of Agriculture, called Enquête

Annuelle sur les Dépenses pour Protéger l’Environnement (ANTIPOL), since the early 1990s.

To our knowledge, this paper represents the first attempt to use this survey for academic

purposes. The ANTIPOL survey provides information on pollution abatement investments

defined as “the purchase of buildings, land, machinery or equipment to limit the pollution

generated by production activity and internal activities or the purchase of external services

improving the knowledge to reduce pollution”. Next, the pollution abatement capital stock at

firm level is built using the perpetual inventory method with a depreciation rate of 15%. This

is a standard rate adopted in the literature for investments in pollution abatement (Aiken et

al., 2009).

The Enquête Annuelle d’Entreprise (EAE) is an annual firm-level survey covering almost all

firms with 20 or more employees, conducted by the French National Institute for Statistics. This

survey provides a measurement for output, i.e. value-added, deflated by its annual industry

price index, and for the usual inputs, i.e. labor measured by the number of employees expressed

in annual full-time equivalent workers, and capital measured by the amount of fixed assets,

deflated by the annual price index for capital goods.

The two data sets are merged, finally resulting in an unbalanced panel data set composed

of 8391 observations and 1130 firms covering the period 1993-2007. Table 1 presents some

descriptive statistics for the variables used to estimate the production function: value added,

labor (number of workers), physical capital stock, and pollution abatement capital stock.8

This table shows that average pollution abatement capital stock is about one-fiftieth of av-

erage physical capital stock. Also note that a fraction of firms has never invested to reduce

pollution, the corresponding stock of capital presents many zeros (18.21% of the total number

of observations), but all the explanatory variables are expressed in logarithms when using a

translog specification. To include all the observations for the variable Z, we follow Battese

(1997), and set z ⌘ ln (Z +D) where D = 1 if Z = 0, and D = 0 if Z > 0, as explanatory

variable instead of ln (Z) which is not defined when D = 1. Battese (1997) also introduces

the variable D as a shifter of the constant term. As we introduce sectoral dummies to capture

unobserved heterogeneity across sectors, we do not introduce the dummy D. Indeed, sectoral

dummies can capture the e↵ect of omitted variables that explain the heterogeneity of pollu-

tion abatement investment behaviors across sectors, making the dummy D redundant. The

same definition, z ⌘ ln (Z +D), is also adopted when implementing conditional nonparametric

frontier estimation.

7In 2007, the food processing industry was found to be the third biggest spender on pollution abatement
investments in France (e167 million), only exceeded by the energy (e437 million) and chemicals, rubbers and
plastics (e204 million) industries.

8Appendix gives a more detailed description of the panel.
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Table 1

5 Results

5.1 SFA

Model selection

The four parametric models proposed above are estimated and then the Vuong (1989) test

is performed to select the most likely one.9 Results are reported in Table 2. The Vuong test

indicates that the multiplicative specification of e�ciency is preferred to the additive one, for

both the input and e�ciency models. It also shows that the input model is preferred to the

e�ciency model when comparing them in the multiplicative case. Consequently, we select the

multiplicative input model as the most likely one at the end of the model selection procedure.

Table 2

We then proceed to test the null hypothesis that pollution abatement capital a↵ects only

the shape of the production technology as in the Coelli et al. (1999) model, i.e. we test the

null hypothesis that �z = �⌧z = �kz = �lz = 0 in Eq. (2).The likelihood ratio test statistics

whose value is 18.616 with a p-value equal to 0.001, allow us to reject such a hypothesis.

Estimation of the preferred model

The estimated values of the parameters of the preferred model, i.e. the multiplicative input

model, serve to compute the output elasticities with respect to K, L and Z and are noted as

"Y,K , "Y,L and "Y,Z . While the average values of "Y,K , "Y,L and "Y,Z are equal to 0.255, 0.780 and

0.018, respectively, we mainly focus our attention on the estimation of the underlying density

functions. They are of interest in order to have information about the variability across firms

and over time of such elasticities. In particular, we estimate the conditional densities of the

above elasticities conditioned on time. Time being an ordered variable, we adopt the approach

by Hall et al. (2004) which uses generalized product kernels to deal with mixed data and cross-

validation to choose the smoothing parameters. We use a second order Gaussian kernel for the

continuous variable and a Li and Racine’s (2007) kernel for the ordered conditioning variable

time. According to Hall et al. (2004), cross-validated smoothing parameters will behave in

such a way that the smoothing parameters for the irrelevant conditioning variables converge

in probability to the upper extremities of their respective ranges, i.e. 1 for the ordered Li and

Racine’s (2007) kernel. Irrelevant conditioning variables are thus smoothed out. At the other

extreme, when such a smoothing parameter is zero, the generalized estimator collapses to the

standard frequency estimator.

9Sectoral fixed e↵ects have been included in the translog specification. Detailed results are available upon
request to the authors.
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Figure 1

Figure 1 reveals that the distributions of "Y,K and "Y,L are clearly unimodal. Conversely,

and very interestingly, it can be observed that the density of "Y,Z is bimodal and appears

to be a mixture of two underlying densities, a first one with a negative mode and a second

one with a positive mode. Overall, about 80% of the firms have a positive elasticity. This

result has two interpretations. First, it suggests that the traditional view about the e↵ect of

environmental regulation on productivity and the Porter hypothesis may coexist. Second, it

reinforces the view that the firms’ e↵orts to reduce pollution do not always positively a↵ect

the firms’ performances, but they do in many cases, as also stressed by Ambec et al. (2013).

Concerning the time evolution of the distributions of such elasticities, Figure 1 also reveals that

the distribution of "Y,Z has clearly evolved over time - the smoothing parameter for time is 0.44

- and shows a positive shift. Indeed, while at the beginning of the period, a relevant fraction

of the firms are characterized by a negative elasticity, at the end of it, almost all the firms

have a positive elasticity. Also note that this result could be considered as consistent with the

theoretical paper by Mohr (2002) since it is observed that the annual share of firms investing

in pollution abatement increased over the period (see Appendix). According to this model,

firms benefit from knowledge spillovers where the amount of knowledge equals the cumulative

experience of all firms using the same technology so that a specific firm will switch to a new

(greener) technology only if enough other firms have done so first.

Next, we focus on the elasticities of substitution. While for a concave production function

with two inputs, the elasticity of substitution among them is always positive (inputs are substi-

tutes), in three- (or more) input production functions, as a result of the all possible interactions

among inputs, an increase in one input may be associated with an increase in the use of an-

other input, to maintain the same level of output. In such a case, these two inputs are called

complements (see e.g. Chambers, 1988). To measure the degree of substitutability between

any two inputs, a widely adopted measure is the Allen partial elasticity of substitution, which

is defined by:

�ij =

PT
t=1iXifi
XiXj

Fij

F
,

whereXi denotes input i, fi ⌘ @f/@Xi, F is the determinant of the bordered Hessian of the pro-

duction function whose elements are 0, fi and fij ⌘ @2f/@Xi@Xi. Fij is the associated cofactor

of fij. If f(X) is concave, a factor of production cannot be a complement for all other factors

in terms of the Allen elasticity. This is appealing since it appears to be intuitively consistent

with the two-input case where factors are always substitutes. Figure 2 shows the estimated

conditional densities of the Allen elasticities of substitution conditional on time. labor and

capital, and labor and pollution abatement capital are always substitutes, with median values

of the elasticities equal to 1.65 and 1.62 respectively. Their densities are tightened around a

single mode and right skewed. The estimated density of Allen elasticity of substitution between

capital and pollution abatement capital is also unimodal but is negatively skewed, suggesting

that capital and pollution abatement capital are substitutes for most firms (the median value of
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the elasticity is equal to 0.16) but at the same time they are complements for other firms. Con-

cerning the time patterns of the distributions of these elasticities, the smoothing parameter for

time ranges between 0.67 and 0.72, suggesting that appreciable changes over time occurred in

the overall distribution of the three partial Allen elasticities. At the same time, however, while

the median value of the elasticities of substitution labor-capital and labor-pollution abatement

capital does not vary significantly over time, the substitutability between capital and pollution

abatement increases constantly over the period, its median varying from -0.10 in 1993 to 0.32

in 2007.

Figure 2

Finally, note that natural outcomes of the estimation of the multiplicative input model are

the time-varying e�ciency scores. They can be computed as exp (�E (uit|"i1, . . . , "iTi)) where

"it = vit � uit, using an extension of the Jondrow et al. (1982) estimator of e�ciency score

to the input model with multiplicative e�ciency. At the same time, however, they are not a

central interest of this paper and detailed results on these scores are available upon request.

5.2 CNFA

To complement the previous analysis, we conduct the CNFA analysis detailed above. CNFA

may serve to detect a possibly complex nonlinear e↵ect of pollution abatement capital on the

production process. Moreover, CNFA also permits us to understand whether external factors

a↵ect both the shape of the frontier and the distribution of e�ciencies.

As a first step, we investigate the ratios of conditional and unconditional e�ciency measures

for full and partial frontiers. The conditional DEA estimates are computed with the localizing

procedure described in Mastromarco and Simar (2015) and optimal bandwidths have been

selected by least squares cross-validation. Figure 3 shows the ratios from a marginal point of

view, i.e. as a marginal function of pollution abatement capital.10 The full frontier ratios (top

panel) show a nonlinear e↵ect of pollution abatement capital on the shape of the frontier. This

nonlinear e↵ect takes the shape of an inverted U relation suggesting the existence of a positive

e↵ect on the shape of the frontier when pollution abatement capital increases at low values of

capital and a decreasing e↵ect for large values of capital. In order to check the robustness of our

result and to inspect whether some extreme observations would hide an e↵ect, we calculated the

ratios for partial frontiers with ↵ = 0.99, and obtained very similar results, which are available

upon request. According to Bădin et al. (2012), the full frontier ratios also provide useful

information on the ‘separability condition’, which in this case, seems clearly to be violated,

because our external variable - pollution abatement capital - is a↵ecting the boundary of the

production set (shifts of the production frontier).

Turning to “low order” partial frontier ratios, looking at the center of the distribution

(↵ = 0.5) (e↵ect on the median of the distribution of Y given that X  x), Figure 3 (bottom

10The plots of the ratios expressed as a marginal function of time are available upon request.

16



panel) displays a slightly favorable e↵ect of pollution abatement capital. We observe a very

flat relation for most of the range of pollution abatement capital which becomes positive for

the highest values of such a variable.11

These results seem to confirm our previous parametric ones that pollution abatement capital

acts more as production factor, a↵ecting the shape of the frontier, than a productivity factor,

influencing the ine�ciency. Thus pollution abatement capital impacts mainly on the shift of

the boundary and less on the distribution of ine�ciencies. Hence, from this evidence, pollution

abatement capital appears to weakly a↵ect e�ciency (technological catch-up) and play a more

important role in accelerating technological change (shifts in the frontier).

Figure 3

Given that the separability assumption is not verified, in order to analyze and isolate the

e↵ect of pollution abatement capital and time on the distribution of e�ciencies, it is necessary

to move to the second-step nonparametric regression using conditional e�ciency scores as a

dependent variable.12 Consequently, in the second step, as suggested by Bădin et al. (2012)

and Mastromarco and Simar (2015), we regress the log of conditional e�ciency scores as a

function of pollution abatement capital (in logs) and time.13 We use the method proposed by

Hall and Racine (2015) to estimate the location e↵ect. Bernstein polynomials are employed

(note that a Bernstein polynomial is also known as a Bezier curve) and the generalized product

kernel is obtained as a product of a second order Gaussian kernel for the continuous predictor,

pollution abatement capital, and a Li and Racine’s (2007) kernel for the ordered variable

time. The delete-one cross validation procedure provides a first order local polynomial for

pollution abatement capital and bandwidths equal to 0.223 and 0.172, for pollution abatement

capital and time, respectively. According to Hall et al. (2007), these results indicate that both

regressors are relevant.

Figure 4

Figure 4 shows that pollution abatement capital has a nonlinear e↵ect on the conditional

e�ciencies. Indeed, for very low levels of pollution abatement capital, the conditional e�-

ciency scores log⌧(x, y|z) - pollution abatement capital relation is quite flat, suggesting that

a minimum level of capital devoted to pollution abatement is necessary to produce an e↵ect.

Then, after reaching a threshold, this relation is no longer flat but roughly shows an inverted

U pattern. We clearly see negative and then positive average e↵ects of pollution abatement

capital on conditional e�ciency (a decrease of log⌧(x, y|z) indicates an increase in e�ciencies,

the optimum being zero).

11The results are very stable to changes in the quantile. Detailed results obtained for other values of ↵ are
available upon request.

12Indeed, if the separability condition is not verified, unconditional e�ciency scores do not provide useful
information since they ignore the heterogeneity introduced by the external variables on the attainable sets of
values for (X,Y ).

13The log transform is natural when analyzing ratios as conditional e�ciency scores.
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The e↵ect of pollution abatement capital seems much more important than the e↵ect of

time, except for small values of pollution abatement capital. This finding suggests that pol-

lution abatement capital needs to reach a certain level to drive e�ciency externalities. The

e↵ect of time is less important for large values of pollution abatement capital, supporting the

hypothesis of decreasing adjustment costs and time delays.

The bottom two panels of Figure 4 exhibit the marginal view from the perspective of time

and abatement pollution capital.14 This evidence, combined with the previous ones, highlights

the nonlinear influence of pollution abatement capital on e�ciency. The time shows a slight

positive e↵ect on e�ciency revealing a very slow technological catching-up process among the

firms under analysis.

In summary, these results complement the previous ones obtained using parametric fron-

tiers. Indeed, on the one hand, comparing these nonparametric findings with the elasticity

obtained from the preferred parametric input model, provides confirmation of the existence

of a heterogeneous e↵ect of pollution abatement capital on the shape of the frontier but also

suggests a particular shape (inverted U) without imposing a specific functional form. On the

other hand, when we estimated the parametric e�ciency model in equation (7) we found that

pollution abatement capital has a positive - but low in magnitude and not significant - e↵ect on

e�ciency. This possibly was the result of the imposed parametric specification and distribution

assumptions on the error terms, since the second-step nonparametric regression performed in

this section indicates a rather complex nonlinear relation. To our knowledge, this is the first

econometric work showing the existence of a non-monotonic e↵ect as suggested, for instance,

by André (2015).

6 Conclusions

This paper estimates the impact of pollution abatement investments on the production tech-

nology of firms, using a novel and rich panel data set covering the French food processing

industries over the period 1993-2007. It aims to contribute to the literature by pursuing two

new directions. First, with respect to a methodological perspective, we take advantage of

recent developments in productivity and e�ciency analysis that allow the consideration of

external factors of production. Specifically, we compare the results obtained with two com-

plementary approaches: parametric stochastic frontier analysis and conditional nonparametric

frontier analysis. These methods present relative advantages and drawbacks and comparing

their results may be useful to provide a more robust and thorough picture of the e↵ect of pol-

lution abatement investments on the production technology of firms. A second novel aspect of

this paper is its modeling and policy-oriented perspective, since we pay attention not only to

the average e↵ect but also on its variability across firms and over time, and search for eventual

nonlinearities. These aspects have been recognized as extremely relevant by the theoretical

literature and have important implications for firms and society as a whole in terms of advice

14These pictures shows the surface of the top panel of Figure 4 from the perspective of pollution abatement
capital and time, respectively by fixing the value of other regressor to its mean.
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on environmentally friendly policy.

We provide new results suggesting that the e↵ect of pollution abatement capital on the shape

of the production frontier is heterogeneous both within firms and over time, and reinforcing the

view that firms’ e↵orts to reduce pollution do not always positively a↵ect their performances,

but do in some cases. We have also documented that the substitutability between pollution

abatement capital and physical capital increases constantly over the period. Finally, when

switching to a fully nonparametric framework, relevant complementary results are provided.

In particular, using this approach it was possible to uncover a nonlinear and non-monotonic

e↵ect of pollution abatement capital, both on the shape of the frontier and on the conditional

e�ciencies. These results have relevant implications both for modeling purposes and in terms

of policy advice.
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Appendix: Description of the panel

Let us first focus on firms’ pollution abatement investments. The share of firms investing in

pollution abatement activities at least one year during the period 1993-2007, for the 1130 firms

constituting the unbalanced panel, is equal to 85.22%. Figure 5 reports the percentages of

non investing firms in the di↵erent sectors of the French food processing industry.15 Pollution

abatement investment behaviours are di↵erent across sectors. All firms invested at least once

in the highly polluting starch and vegetable fats and oils manufacturing sector, while only two

thirds of firms did so in the beverage sector.

Figure 5

Consider now the trends in pollution abatement investments. The annual share of investors

increases from 51.95% in 1993 to 65.16% in 2007, as shown in Figure 6. Such an increase is

mostly due to a level shift that occurred from 2000 to 2001 when the share of firms investing

to reduce pollution moved from 53.06% to 68.82%. This is likely due to stricter environmental

constraints. In 2000, indeed, the European Union promulgated a relevant directive, i.e., the EU

water framework directive, aiming to achieve a good status for all waters and introducing new

standards for managing Europe’s waters (see e.g., Kallis and Butler, 2001). The treatment of

waste water is one of the most important fields for pollution abatements, concerning on average

more than 50% of the total pollution abatement investments of the French food industry. At the

same time, when focusing only on the firms investing in pollution abatements, it can be noted

that the average amount of investments decreases from 320.932 KEuros in 1993 to 247.261

KEuros in 2007 and that this decrease occurred in the 2000s, as shown in Figure 6.

Figure 6

15The French food industry can be broken down into 10 sectors when the NACE classification at the 3-digit
aggregated level is considered.
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Table 1: Summary statistics

Variable Label Mean Std. dev.
Value-Added (K Euros) Y 27605.71 52847.71
labor (Number of workers) L 418.03 534.38
Capital stock (K Euros) K 47756.40 104830.80
Pollution Abatement Capital stock (K Euros) Z 980.53 2575.60

Table 2: Model selection results

Null Hypothesis Vuong Test P-value
Statistics (V)

Additive vs Multiplicative -24.458 < 0.001
(Input model)
Additive vs Multiplicative -24.531 < 0.001
(E�ciency model)
Input model vs E�ciency model 5.3142 < 0.001
(Multiplicative case)
Notes.
The Vuong statistic, V , is asymptotically distributed as standard normal distribution.
If V > 1.96, then the first model is favored at 5% significance level.
If V < �1.96, then the second model is favored at 5% significance level.
Otherwise, for �1.96  V  1.96, neither model is preferred.
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Figure 1: Estimated conditional densities of elasticties
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Figure 3: The top panel represents the full ratio bRO(x, y|z) as a marginal function of pollution

abatement capital (in logs). The bottom panel is the ratio bRO,↵(x, y|z, t) for ↵ = 0.5, so for the
median-order e�ciencies.
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Figure 4: Estimated location e↵ect of conditional e�ciency scores (top panel), and their two
marginal views (bottom panel), as function of pollution abatement capital (in logs) and time.
Generalized Local Polynomial Regression is employed. Here we use the log(⌧(x, y|z)) as the
dependent variable. The two marginal views are obtained by fixing the value of the other
regressor to its median. 95% bootstrapped confidence bands are also reported.
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Animal Slaughtering and Processing
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Figure 5: Percentages of pollution abatement non investing firms in food processing industry
sectors
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Figure 6: Trends in pollution abatement investments
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