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Abstract

A growing number of studies in finance and economics seek to explain insurance choices

using the assumptions advanced by behavioral economics. One recent example in agricul-

tural economics is the use of cumulative prospect theory (CPT) to explain farmer choices

regarding crop insurance coverage levels (Babcock, 2015). We build upon this framework

by deriving willingness to pay (WTP) for insurance programs under alternative assump-

tions, thus extending the model to incorporate farmer decisions regarding whether or not to

purchase insurance. Our contribution is twofold. First, we study the sensitivity of farmer

WTP for crop insurance to the inclusion of CPT parameters. We find that loss aversion and

probability distortion increase WTP for insurance while risk aversion decreases it. Probabil-

ity distortion in losses plays a particularly important role. Second, we study the impact of

yield distribution skewness on farmer WTP assuming CPT preferences. We find that WTP

decreases when the distribution of yields moves from negatively- to positively-skewed and

that the combined effect of probability weighting in losses and skewness has a large negative

impact on farmer WTP for crop insurance.
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1. Introduction

A growing literature in finance and economics attempts to explain insurance choices using behav-

ioral economic assumptions. Barberis (2013b) provides a comprehensive review of advances in

the application of cumulative prospect theory (CPT). CPT preferences are characterized by four

parameters (Tversky and Kahneman, 1992). Reference dependence refers to the fact that people

derive utility from gains and losses relative to some reference point rather than from absolute

levels of wealth. For loss averse individuals, losses loom larger than gains. Preference reversal

implies that individuals are risk averse in gains and risk seeking in losses. Decision weighting

implies overweighting of small probabilities and underweighting of large probabilities. In the field

of insurance, CPT helps to explain phenomena such as the purchase of low deductible insurance

plans (Sydnor, 2010), of home and automobile insurance plans (Barseghyan et al., 2013) and the

unattractiveness of annuities (Hu and Scott, 2007). In agricultural economics, while the vast

majority of previous work has used the standard expected utility theory (EUT) framework (see

for instance Du et al. (2017) for one of the latest research in this realm), one recent example uses

CPT to explain observed choices regarding crop insurance coverage levels among U.S. farmers,

conditional on the purchase of insurance (Babcock, 2015). We aim to study CPT preferences as

determinants of farmer decisions to insure, especially under alternative assumptions about the

distribution of crop yields. Although several recent studies have experimentally elicited CPT

preferences (Bocquého et al., 2014; Bougherara et al., 2017), eliciting these preferences among

farmers remains a challenge. We therefore employ simulation, which is particularly useful when

estimating the impact of unobservable determinants such as risk preferences.

We use a framework similar to that used by Babcock, which we extend in order to model the

choice regarding whether or not to insure. Our objective is twofold. First, we aim to study the

impact of CPT parameters, in particular loss aversion and probability weighting, on the decision

to insure. To do so, we compute farmer willingness to pay (WTP) for insurance and extend the

preference scenarios investigated by Babcock by undertaking a systematic sensitivity analysis.

We find that loss aversion and probability distortion both increase the incentive to insure, while

risk aversion decreases this incentive. In particular, we find evidence that probability distortion

in losses plays a significant role in determining WTP. Second, we aim to determine the impact

of skewness in the distribution of yields on farmer WTP for insurance as a function of CPT

parameters. Indeed, since the 90s, agricultural economists have recognized the impact of crop
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yield distributional assumptions on the calculation of insurance premiums (Nelson, 1990; Coble

et al., 1996). However, these analyses model preferences using the assumptions of EUT. We

argue that distributional assumptions matter all the more in a CPT framework. In finance,

for example, some studies have considered the impact of asset skewness on pricing in a CPT

framework (Barberis and Huang, 2008; Ågren, 2006). To the best of our knowledge, the impact

of such distributional assumptions in a CPT framework has not yet been considered in the realm

of agricultural economics. Our results indicate that WTP decreases when the yield distribution

moves from negatively- to positively-skewed and that the combined effect of probability weighting

in losses and skewness has a large negative impact on the decision to insure.

Our paper is organized as follows. Section 2 introduces our modeling and simulation frame-

work. In section 3, we study farmer insurance decisions when they are assumed to have EUT

preferences vs. CPT preferences and carry out a sensitivity analysis on these results. In sec-

tion 4, we examine the impact of yield skewness on the insurance choices of farmers with CPT

preferences. Section 5 concludes.

2. Modeling the farmer’s decision to insure

In this section, we introduce our model (section 2.1) and the parametrization we use in our

simulations (section 2.2).

2.1. The model

In this paper, we use Babcock’s insurance modeling framework and, for the sake of clarity and

brevity, focus solely on corn1. Considering a representative corn farm that is assumed to purchase

revenue insurance, let y and P , respectively, denote the stochastic farm yield and harvest-period

futures price distributed according to the joint distribution function F (y, P ), with 0 < y < b and

0 < P <∞. The initial per-acre revenue guarantee is expressed as a fraction, α, of the product of

expected yield and expected price: Rg = α.E(P ).E(y) where expectations are taken at the time

the insurance contract is signed. Farmer and insurance company expectations are assumed to

be identical. Each level of coverage α is associated with a corresponding proportionate premium

subsidy rate s(α).

The per-acre premium subsidy therefore depends on both the coverage level and the pre-

mium level: S(α) = s(α)ρ(α) where ρ is the unsubsidized premium, which is assumed through-

1Babcock analyses three different crops (corn, wheat and cotton) in three different US counties.
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out to be set at actuarially fair levels. The producer premium or subsidized premium equals

ρp(α) = ρ(α).(1 − s(α)). Therefore the expected per-acre subsidy for buying insurance simply

equals the premium subsidy S(α). The type of revenue insurance purchased by almost all farm-

ers increases the level of the revenue guarantee if the actual price at harvest is greater than the

expected price. The indemnity function is thus I = max[α.E(y).max(E(P ), P ) − Py, 0], and

ρ(α) =
∫ b
0

∫∞
0 I dF (y, P ) where dF (y, P ) is the joint distribution function of price and yield.

Farmers are assumed to have preferences as described by CPT (Tversky and Kahneman,

1992). Each farmer values a risky prospect that can take on m+n discrete values, xi, each with

an associated probability, pi. The total value of the risky prospect is then the weighted average

value of the xi’s, which writes:

V =
n∑

i=m

v(xi)π(pi) (1)

where π(pi) translates a probability to a decision weight and v(0) = 0.

Functional forms for the value function v(.) and the decision weighting functions π(.) are

given by:

v(x) =

 xa if x ≥ 0

−λ.(−x)a if x < 0
(2)


w+(p) = pγ

[pγ+(1−p)γ ]1/γ

w−(p) = pδ

[pδ+(1−p)δ]
1/δ

(3)

where a is the concavity of the value function and λ is a loss aversion parameter. γ and δ are

parameters of the probability weighting functions.

The xi values in Eq. 1 are sorted from smallest to largest where m values are negative

losses and n values are positive gains. These values do not represent absolute levels of income or

wealth, but rather changes in income or wealth from an initial reference point. Thus no change

means that xi = 0.

We depart from Babcock by considering the reference point R′ defined in Eq. 4 and the

associated gain or loss for the ith realization of price, yield and indemnity, where the crop revenue
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is defined as R = Pi.yi:

R′ = E(R) with xi = Pi.yi + Ii − ρ(α)(1− s(α))−R′ (4)

R′ is equivalent to Babcock’s first reference pointR1 = E(R)+ρ(α)(1−s(α)) with xi = Pi.yi+Ii−R1.

It is also equivalent to Babcock’s second reference point R2 = E(R) with xi = Pi.yi + Ii − R2,

assuming the subsidized premium is not a sunk cost.

Assuming that farmers do buy insurance, Babcock seeks to determine the optimal level of

crop insurance coverage α under cumulative prospect theory, i.e. the level that maximizes the

expected value of crop revenue under CPT assumptions (Eq. 1). He considers three represen-

tative farms (producing corn, wheat and cotton) in three US counties (York, NE, Sumner, KS,

and Lubbock, TX, respectively) and uses observed data to calibrate the model (see Babcock,

2015: Table 2). Premium rates are then simulated by drawing yields and prices from calibrated

distributions. In turn, these rates are then used to compute values of the value function (Eq. 1)

in order to find the maximum. Like Babcock, we compute certainty equivalent returns expressed

in $/ac rather than presenting results in the value function space. From here, however, our

modeling approach differs from Babcock in that we extend the model to incorporate the farmer’s

decision whether or not to insure.

Miranda (1991), Smith et al. (1994) and Skees et al. (1997) assumed that farmers seek insur-

ance coverage in order to minimize the variance of their net yield or, equivalently, to maximize

their yield risk reduction, as measured by the difference between the variance of the yield and

the variance of the net yield. In contrast, Mahul (1999) and Bourgeon and Chambers (2003)

assumed that farmers seek insurance in order to maximize the expected utility stemming from

their net yield. We adopt a third approach, which is also based on (expected) utility maximiza-

tion, but assumes that the maximization process consists of a lottery choice. In this framework,

each farmer faces the following two lotteries:

• ‘Insurance lottery’ : if the farmer purchases insurance, he2 pays a premium and expects to

receive a non-zero indemnity whenever he suffers an insured loss. The outcome he expects

is xinsuredi = Pi.yi + Ii − ρp(α)− E(R)

• ‘Non-insurance lottery’ : if the farmer does not purchase the insurance, the outcome he

2As is common practice in the principal/agent literature, throughout the paper, we will refer to the insurer
as "she" and to the farmer as "he".
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expects is xnoninsuredi = Pi.yi − E(R)

Following Eq. 1, the expected values of the above lotteries are given by V insured and V noninsured.

In this framework, farmer i will decide to purchase insurance as long as the ‘insurance lottery’

provides him with an expected value greater than or at least equal to the ‘non-insurance lottery’.

Eq. 5 gives the farmer decision rule, where the dummy variable di equals one if farmer i decides

to buy insurance:

di = 1 ⇔ E
(
V insured(ρp)

)
≥ E

(
V noninsured(ρp)

)
(5)

which may be rewritten as:

di ×
(
E
(
V insured(ρp))− E

(
V noninsured(ρp))

)
≥ 0 (6)

For each farmer, we can then find the threshold subsidized premium ρ∗ that leaves him

indifferent between both lotteries (i.e., V insured(ρ∗) = V noninsured(ρ∗)). The threshold subsidized

premium can be understood as the highest premium that ensures that Eq. 6 holds when di = 1,

or alternatively, as his willingness to pay (WTP) for transferring the risk to the insurer.

We aim to explain farmer WTP for insurance as a function of CPT parameters. As developed

by Babcock (pp.1373-1374), the convexity of the value function in losses creates a disincentive for

farmers to insure. This convexity in losses must be offset either by loss aversion (avoiding a loss

is valued more than obtaining a corresponding gain) or probability distortion (overweighting of

low probability events) in order for farmers to be willing to insure. This is why we expect WTP

to increase with loss aversion (for λ > 1) and with probability distortion (for γ < 1 and δ < 1).

As for risk aversion (a), two opposing effects are at play. WTP is expected to increase with risk

aversion in gains, but decrease with risk seeking in losses, making it impossible to predict the

net impact of these effects beforehand.

2.2. Data and parametrization

We use the same data as Babcock, focusing exclusively on corn (see Babcock: second column of

Table 1, p.1375): the expected yield is 190 bu/ac and the expected price is $4.40/bu; there is

no price-yield correlation; yields are assumed to follow a Beta distribution (min=0, max=250,

shape1=9.340, shape2=2.949) and price is assumed to follow a log-normal distribution with pa-
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rameters µ = 1.417 and σ = 0.358.3 The coverage level α takes on discrete values ranging

from 0.5 to 0.85 in 0.05 increments. Each level of α is associated with a corresponding pro-

portionate premium subsidy rate s as follows: [α = 0.5; s = 0.67]; [α = 0.55, 0.60; s = 0.64];

[α = 0.65, 0.70; s = 0.59]; [α = 0.75; s = 0.55]; [α = 0.8; s = 0.48]; and [α = 0.85; s = 0.38].

Like Babcock, the analyses reported in section 3 are obtained by drawing 5,000 Beta yields

and log-normal prices to simulate the distribution of possible revenues and deriving the variables

required to implement the modeling strategy described in the previous subsection.4

In section 4 we turn to an analysis of the impact of the yield distribution skewness on

farmer decisions to insure, and thus proceed in a slightly different way. With respect to yields,

we fix prices to their expected value, namely $4.40/bu; thus, only yields are random. Second,

the 5,000 yield draws are no longer obtained from Babcock’s Beta distribution, but rather from

a skew-normal distribution, chosen for its desirable properties as regards skewness parameteri-

zation.5 A random variable Z is said to be skew-normal distributed with parameters ξ, ω and

η if Z ∼ SN(ξ, ω2, η), where SN(ξ, ω2, η) = 2φ(Z−ξω )Φ(ηZ−ξω ) with φ(.), and Φ(.) denoting the

N(0, 1) density and cumulative distribution function, respectively (Azzalini, 2005, 2011).6 In the

definition of the skew-normal distribution, ξ is a location parameter, ω is a scale parameter and η

is a shape parameter. The advantage of the skew-normal distribution over the Beta distribution

for our analysis is that, as can be shown from Azzalini (2011), the SN -distribution skewness mea-

sure κ is fully determined by the shape parameter η since κ = 4−π
2

( η√2/π√
1+η2

)3(
1− 2

π ( η√
1+η2

)2
)−3/2.

Figure 1 shows that a skew-normal distribution can satisfactorily be adjusted to Babcock’s Beta

distribution as well as to the 5,000 empirical Beta-distributed draws used in section 3. Table

1 accordingly shows that the first three moments closely match for the three distributions we

consider. In section 4, we therefore use skew-normal as the reference distribution from which

yields are drawn and, in order to study the impact of skewness, we vary the shape parameter η

while holding the location and scale parameters fixed at their estimated values, namely ξ = 226

and ω = 47.247.

3These values are derived from Babcock’s expected price ($4.40/bu) and price volatility (37%) parameters.
4Although the purpose of this paper differs from that of Babcock, for control purposes, we replicate the results

of Babcock’s Table 3 and find similar results (see Table 6 in appendix). This exercise confirms that the specific
draw for the empirical crop revenue distribution that we generate does not significantly differ from Babcock’s.

5The skew-normal distribution has already been used in several strands of the economics literature (Ball and
Mankiw, 1995; Chen et al., 2014; Kim et al., 2014; Peat et al., 2014; Jochmans, 2017), notably to study insurance
(Vernic, 2006; Bernardi et al., 2012; Eling, 2012) and agricultural (Robbins and White, 2011) issues.

6Azzalini and Capitanio (1999, 2003) outline a method for generating skew-normal distributed random vari-
ates.
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Figure 1. Superimposition of Babcock’s Beta distribution, the histogram of the
empirical 5,000 Beta-distributed yields used in section 3 and the
adjusted skew-normal distribution used in section 4
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Table 1. First Three Moments for Babcock’s Beta
Distribution, the Empirical 5,000 Beta-distributed
Yields Used in Section 3 and the Adjusted
Skew-normal Distribution used in Section 4

Distribution Mean St. dev. Skewness

Babcock’s Beta distribution (a) 190.01 29.29 -0.621

Section 3 empirical Beta-distributed draws 190.68 29.14 -0.686

Section 4 adjusted skew-normal distribution 190.04 30.74 -0.683

(a) The Beta distribution is defined by the parameters reported in Babcock: “Yield Param-

eters” section, second column of Table 1, p.1375.

3. Farmer Insurance choice with CPT vs. EUT preferences

Two issues are addressed in the following subsections. First, in section 3.1, we analyze the

impact of computing farmer WTP for insurance using CPT preferences as compared with EUT

preferences, assuming that the CPT preference parameter values are those presented in Tversky

and Kahneman. Second, in section 3.2, we study the degree to which the decision to insure

is sensitive to the chosen preference parameter values. Recall that, in section 3, Babcock’s

Beta distribution was used to randomly draw yields such that the theoretical yield distribution

skewness is −0.621 and the empirical yield distribution skewness is −0.686 (see Table 1).

3.1. Comparing farmer WTP for insurance: EUT vs CPT using Tversky and Kahneman’s

parameter values

In this section, we aim to examine farmer decisions to buy crop insurance as a function of

farmer preferences. Considering representative farmers and using the CPT framework to model

their risk preferences, Babcock sought to explain observed choices for crop insurance coverage

conditional on farmers actually buying insurance. We depart from this objective in that we

model the decision whether or not to buy insurance by computing the farmer’s WTP to insure.

We will now consider the farmer’s decision to insure for each coverage level. Using the

functional forms described by Tversky and Kahneman, we compute farmer willingness to purchase

insurance under the alternative assumptions of CPT and EUT preferences. Results are presented

in Table 2 as a function of coverage level α and the associated subsidy level s.
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Table 2. Farmer Decisions to Insure Under Reference Point R′ Defined in Eq. 4

(1) (2) (3) (4) (5) (6) (7) (8)

Cov. Subsidy Premiums ($/ac) CPT (a) EUT (b)

level s Unsubsidized Subsidized CER WTP Optimal CER WTP Optimal

α premium premium (c) subsidy (d) (c) subsidy (d)

ρ ρp ($/ac) ($/ac) s∗ ($/ac) ($/ac) s∗

0.85 0.38 84.01 52.08 -4.99 124.43 -0.48 6.49 69.83 0.17

0.80 0.48 63.36 32.95 -7.33 101,46 -0.60 7.49 52.17 0.18

0.75 0.55 46.23 20.80 -11.88 80.92 -0.75 5.80 37.68 0.19

0.70 0.59 32.41 13.29 -17.58 62.87 -0.94 3.13 26.15 0.19

0.65 0.59 21.68 8.89 -23.66 47.27 -1.18 0.54 17.30 0.20

0.60 0.64 13.83 4.98 -28.64 34.30 -1.48 -0.58 10.92 0.21

0.55 0.64 8.30 2.99 -33.32 23.78 -1.86 -1.93 6.49 0.22

0.50 0.67 4.60 1.52 -37.06 15.52 -2.37 -2.81 3.57 0.23

(a) Cumulative Prospect Theory with λ = 2.25, a = 0.88, γ = 0.61, δ = 0.69; (b) Expected Utility Theory with λ = 1, a = 0.88, γ = 1,

δ = 1; (c) CER stands for Certainty Equivalent Return; (d) The optimal subsidy is defined as 1 −WTP/ρ, that is, the subsidy rate

required in order for WTP to equal the unsubsidized premium.

First, we replicate Babcock’s results for the chosen parameters by computing the unsub-

sidized premiums (see column (1)), the subsidized premiums (see column (2)), and the corre-

sponding certainty equivalent returns (see column (3)) under CPT preferences. We find similar

levels of certainty equivalent return (see Babcock: p. 1379, Table 3, Column 1). Then, using the

decision rule described in Eq. 6, we compute the farmer willingness to pay for insurance under

each coverage level using Tversky and Kahneman’s CPT preference parameter values. Results

are presented in column (4) of Table 2. WTPs range from around $16/ac for a coverage level of

0.50 to around $124/ac for a coverage level of 0.85. These values are higher than the subsidized

premium and even the unsubsidized premium for all coverage levels, indicating that farmers with

CPT preferences choose to insure whatever the coverage level. We next compute the optimal

subsidy (see column (5)), i.e. the subsidy rate necessary in order for WTP to equal the unsubsi-

dized premium. Assuming Tversky and Kahneman’s CPT preferences, we find negative optimal

subsidies, indicating that farmers do not in fact require subsidies in order to buy insurance.

Result 1 Using Tversky and Kahneman’s CPT preference parameter values (λ = 2.25, a = 0.88,

γ = 0.61, δ = 0.69), farmers always purchase insurance whatever the coverage level. Under this

assumption, therefore, farmers do not require subsidies in order to buy insurance.

In the remaining columns of Table 2, we compute certainty equivalent returns (column (6)),
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willingness to pay for insurance (column (7)) and optimal subsidy rates (column (8)) assum-

ing farmers have EUT preferences. We find that WTP values under the assumption of EUT

preferences are much lower than those found under the assumption of CPT preferences, ranging

between $4/ac and $70/ac. With EUT preferences, farmers are unwilling to purchase unsubsi-

dized insurance, as also evidenced by the fact that the optimal subsidy rates are all positive.

These rates are, however, small in absolute value compared to both the optimal CPT subsidy

rate (column (5)) and the implemented subsidy rates s.

Finally, we compute the ‘optimal’ risk aversion a∗ (see Table 3, column 3), that is, the

values a required in order to justify the subsidy rates offered under the assumption of EUT

preferences (λ = 1, a∗, γ = 1, δ = 1). Table 3 shows that for the offered subsidy rates, farmer

risk aversion should be in the 0.37-0.50 range rather than the 0.88 value that has been assumed

so far, suggesting that farmers must actually be more risk averse in order to justify the subsidy

rates that are currently being offered.

Table 3. Optimal Risk Aversion with Reference Point R′ Under EUT Preferences
(λ = 1, a∗, γ = 1, δ = 1)

Coverage level α Subsidy s Optimal risk aversion a∗ (a) CER ($/ac) (b) WTP ($/ac) (c)

0.85 0.38 0.50 -2.00 52.08

0.80 0.48 0.40 -0.83 32.95

0.75 0.55 0.36 -0.51 20.80

0.70 0.59 0.34 -0.41 13.29

0.65 0.59 0.38 -0.72 8.89

0.60 0.64 0.36 -0.50 4.98

0.55 0.64 0.38 -0.70 2.99

0.50 0.67 0.37 -0.58 1.52

(a) The optimal level of risk aversion is defined as the level of parameter a required in order for WTP for insurance to

equal the subsidized premium ρp under EUT; (b) CER stands for Certainty Equivalent Return; (c) This column serves

as a cross-check: by the definition of a∗, the corresponding computed WTP should be, and actually is, found to be equal

to the subsidized premium ρp reported in Table 2, column 2.

Result 2 Under the assumption of EUT preferences and Tversky and Kahneman’s risk aversion

parameter values (λ = 1, a = 0.88, γ = 1, δ = 1), farmers never purchase unsubsidized insurance,

whatever the coverage level. In this case, a subsidy is required in order for farmers to buy

insurance, but the subsidy rates required to incite farmers to purchase insurance are smaller than

those that are actually offered, implying that, conditional on the chosen preference parameters,

farmers are over-subsidized. A greater degree of risk aversion than that described by Tversky and
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Kahneman is therefore necessary in order to justify the subsidy rates that are currently being

offered (specifically, parameter a should be in the 0.37-0.50 range).

3.2. Sensitivity to changes in CPT parameters

To simulate the impact of preference parameters on WTP for insurance, we allow the risk aversion

parameter a to vary within the [0.5, 1] range by increments of 0.1, the loss aversion parameter λ

to vary within the [1, 3.5] range by increments of 0.5, and the probability distortion parameters δ

and γ to vary within the [0.5, 1] range by increments of 0.1. To conduct this sensitivity analysis,

we additionally consider Tversky and Kahneman’s parameter values, namely a = 0.88, λ = 2.25,

δ = 0.69, and δ = 0.61. For the sake of brevity and clarity, we restrict the insurance coverage

level to 85%.

Next we recompute farmer WTP for insurance considering all possible parameter combi-

nations, that is, 74 = 2, 401 unique combinations. This is equivalent to simulating the choices

of 2, 401 farmers, each having preferences that are characterized by a different set of parameter

values. Among these farmers, we are able to identify those who would have bought insurance

(whose WTP is above the offered premium) and those who would not have bought insurance

(whose WTP is below the offered premium).

To illustrate the results of this analysis, we plot farmer WTP as a function of risk aversion

(a), loss aversion (λ), and probability distortion in losses (δ), holding the probability distortion

in gains γ at Tversky and Kahneman’s value of 0.61 (Figure 2). On the same graph, we also plot

the unsubsidized (fair) premium ρ and the subsidized premium ρp (s = 0.38).

Figure 2 shows that WTP decreases with risk aversion, increases with loss aversion, and

increases with probability distortion in losses. Using the parameter combinations we consider,

farmers always purchase insurance under the subsidized premium, suggesting that farmers are

over-subsidized if we are to assume that they have CPT preferences. However, the left panel

of Figure 2 also shows that small enough levels of risk aversion and high enough levels of loss

aversion are necessary in order for farmers to purchase unsubsidized insurance. When farmers

overweight small probabilities in losses (δ = 0.5; right panel), however, they always purchase

insurance, even without subsidy.

To explore these results further, we regress simulated farmer WTP values on their preference

parameters as specified in Eq. 7. The model was specified such that the constant βEUT_RN can

be interpreted as farmer WTP assuming EUT preferences (λ = 1, γ = 1 and δ = 1) and risk

11



Figure 2. Impact of Risk Aversion (a), Loss Aversion (λ), and Probability
Distortion in Losses (δ) on Farmer Willingness to Pay for Insurance
Assuming a Probability Distortion in Gains γ = 0.61 and an 85%
Coverage Level
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neutrality (a = 1).

WTP = βEUT_RN + βa(1− a) + βλ(λ− 1) + βγ(1− γ) + βδ(1− δ) + ε (7)

According to the hypotheses developed in section 2.1 and consistent with the graphical analysis,

we expect WTP to increase with loss aversion (λ > 1). That is, we expect βλ > 0. We also

expect WTP to increase with probability distortion (γ < 1 and δ < 1), expecting βγ > 0 and

βδ > 0. As for risk aversion (a), two opposite effects are at play. WTP is expected to increase

with risk aversion in gains but to decrease with risk seeking in losses such that we are not able

to make an ex-ante prediction regarding the sign of parameter βa.

While WTP is indeed a variable of interest, we are more interested in the rule determining

whether or not farmers decide to purchase insurance. We therefore modify Eq. 7, using as

our dependent variable the surplus defined by WTP − ρ, i.e. the difference between WTP and

the unsubsidized premium. We therefore estimate the empirical model specified in Eq. 8 with

β0 = βEUT_RN − ρ. When WTP − ρ is positive (resp. negative), farmers insure (resp. do not

insure).

Surplus = β0 + βa(1− a) + βλ(λ− 1) + βγ(1− γ) + βδ(1− δ) + ε (8)

Table 4 reports the estimated parameters for Eq. 8, considering both the entire sample of

simulated farmers (model (1)) as well as two subsamples: those who actually insure (model (2))

and those who do not (model (3)).
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Table 4. OLS Regression of Surplus ($/ac) for an 85% Coverage Level
(Eq. 8)

(1) (2) (3)
Whole sample Insured farmers Uninsured farmers

Dependent variable WTP − ρ WTP − ρ>0 WTP − ρ<0
Parameter Marginal Parameter Marginal Parameter Marginal
estimate effect estimate effect estimate effect

β0 -11.71∗∗∗ -16.87∗∗∗ -7.56∗∗∗
(0.41) (0.46) (0.39)

βa -67.03∗∗∗ 0.59∗∗∗ -74.56∗∗∗ 0.66∗∗∗ -43.87∗∗∗ 0.39∗∗∗
(0.76) (0.007) (0.82) (0.007) (1.10) (0.010)

βλ 11.93∗∗∗ 0.27∗∗∗ 13.11∗∗∗ 0.30∗∗∗ 7.57∗∗∗ 0.17∗∗∗
(0.16) (0.004) (0.17) (0.004) (0.21) (0.005)

βγ 14.43∗∗∗ -0.09∗∗∗ 15.27∗∗∗ -0.09∗∗∗ 11.79∗∗∗ -0.07∗∗∗
(0.75) (0.005) (0.75) (0.005) (0.82) (0.005)

βδ 128.34∗∗∗ -0.89∗∗∗ 142.46∗∗∗ -0.98∗∗∗ 64.11∗∗∗ -0.44∗∗∗
(0.78) (0.005) (0.91) (0.006) (1.67) (0.011)

#Obs 2,401 1,980 421
R squared 0.9448 0.9394 0.8417

Notes: Standard errors are in parentheses. Marginal effects are computed as the change in surplus in re-
sponse to a 1% change in parameter value at the values elicited by Tversky and Kahneman: 0.88 for risk
aversion a, 0.61 for probability distortion in gains γ, 0.69 for probability distortion in losses δ, and 2.25 for
loss aversion λ); ∗∗∗ denotes statistical significance at the 1% level.

We find a negative constant, β0 < 0, meaning βEUT_RN < ρ, which indicates that risk-

neutral-EUT farmers have no incentive to insure. As expected, we also find that loss aversion

and probability distortion increase the incentive to insure (βλ > 0, βγ > 0, βδ > 0). While

the impact of risk aversion was theoretically uncertain, we find that it decreases the incentive

to insure (βa < 0): the positive impact of risk aversion in gains is overcome by the negative

impact of risk seeking in losses. Marginal effects were computed as semi-elasticities, depicting

the WTP variation in $/ac for a 1% increase in the respective parameter value. Considering

model (1) in Table 4, we find that farmer surplus is most impacted by changes in probability

distortion in losses, for which a 1% increase in distortion (i.e., a 1% decrease in the δ parameter)

leads to a $0.89/ac increase in surplus. This is one and a half times the effect of risk aversion

and more than three times the effect of loss aversion in absolute value, and almost ten times

the effect of probability distortion in gains. The dominant impact of probability distortion in

losses may thus explain to a large extent Result 1 in section 3.1, according to which a farmer

with Tversky and Kahneman’ CPT preferences would always purchase insurance, whereas an

EUT farmer would only purchase insurance if subsidized. Next we consider models (2) and (3).

For insured farmers (model (2)), the impact of probability distortion in losses is higher than for

the sample as a whole, such that WTP is large enough to lead farmers to insure. In contrast,

for uninsured farmers (model (3)), the impact of probability distortion in losses is small: a 1%
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increase in probability distortion in losses leads to only a $0.44/ac increase in farmer surplus.

Together with a lower impact of loss aversion, this yields a large enough decrease in WTP to

lead farmers to refuse insurance.

We can now conclude with the following general result.

Result 3 Loss aversion and probability distortion increase the incentive to insure, while risk

aversion decreases the incentive to insure (risk aversion in gains is overcome by risk seeking in

losses). Probability distortion in losses has the greatest impact on farmer surplus.

4. Analyzing the impact of skewness on CPT farmer insurance choice

Since the 90s, agricultural economists have recognized the implications that assumptions about

crop yield distributions can have for the calculation of insurance premiums (Nelson, 1990; Coble

et al., 1996). More recently, the question of how crop yields are distributed has been debated

in the literature (Just and Weninger, 1999; Atwood et al., 2003; Ramirez et al., 2003; Sherrick

et al., 2004; Harri et al., 2009; Claassen and Just, 2011). Importantly, all of these papers model

preferences under EUT assumptions. We argue that distributional assumptions matter to an even

greater extent in a CPT framework. In finance, Barberis (2013a,b) reviews papers demonstrating

that probability weighting and loss aversion can explain some economic puzzles. CPT helps to

explain phenomena such as the purchase of low deductible insurance (Sydnor, 2010) and home

and automobile insurance (Barseghyan et al., 2013), as well as the unattractiveness of annuities

(Hu and Scott, 2007). We know of two theoretical papers that deal with the impact of CPT

preferences when risk is skewed. Barberis and Huang (2008) theoretically show that a positively-

skewed asset is overpriced as compared to EUT predictions when investors put more weight

on the tails. Ågren (2006) finds similar results using a different modeling framework. To the

best of our knowledge the impact of distributional assumptions regarding yields has not yet

been investigated under CPT assumptions in the field of agricultural economics. We expect

that parameters such as loss aversion and probability weighting will impact insurance decisions

differently depending on crop yield skewness. In particular, given previous findings in finance,

a CPT farmer should place a greater value on more positively-skewed yield distributions and

would therefore be less willing to insure under these conditions.

In this section, we study the impact of yield skewness on surplus, WTP − ρ as defined in

section 3, when farmers are assumed to have CPT preferences. Recall that, in this section, price is

non-random and we use a skew-normal distribution because we can easily parametrize skewness
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(see section 2.2). For the simulation, we vary the skew-normal distribution shape parameter

η such that the yield distribution skewness measure κ takes on values in the [−1, 1] range in

increments of 0.25.7 CPT preference parameters are chosen using the same ranges as in section

3.2 and for brevity and clarity, we again restrict the coverage level to 85%. Each of our 2,401

simulated farmers was thus faced with 9 yield distributions, resulting in 21,609 simulations.

First we review the intuition behind these results by presenting them graphically. Figure 3

reports the impact of yield skewness κ on farmer surplus (WTP − ρ) according to loss aversion

λ and probability distortion in losses δ, assuming Tversky and Kahneman’s parameter values for

risk aversion (a = 0.88) and probability distortion in gains (γ = 0.61). Several conclusions can

be derived from these plots.

Figure 3. Impact of skewness (κ) on farmer surplus depending on loss aversion (λ)
and probability distortion in losses (δ), assuming risk aversion a = 0.88,
probability distortion in gains γ = 0.61, and an 85% coverage level

First we consider the left panel of Figure 3, in which there is no probability distortion in

losses (δ = 1), and more specifically the case without loss aversion (λ = 1, lighter gray line).

We find that whatever the skewness level, the farmer will never insure because the surplus is

always negative. On the one hand, the more negatively skewed the yield, the more negative the

surplus. In this case, large losses occur, but with a small probability. On the other hand, the

7The definition of κ from η for the skew-normal distribution (see section 2.2) implies that the extreme values
for κ cannot be exactly ±1 but rather ± 4−π

2

(
2

−2+π

)3/2 ∼ ±0.995. Nevertheless, other values considered for κ are
±0.75, ±0.50, ±0.25, and zero, consistent with the 0.25 increment we use.
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more positively skewed the yield, the less negative the surplus. Under these conditions, small

losses occur with a high probability. All in all, in the absence of loss aversion and probability

distortion in losses, WTP is not high enough to incite the farmer to insure.

Next we consider the case where farmers distort probabilities in losses (δ < 1), but are not

averse to losses (λ = 1), as evidenced by comparing the lighter gray lines in the middle and

right panels of Figure 3. Even a small distortion in losses (middle panel) leads the farmer to

insure, whatever the level of skewness. Moreover, the slope of the line becomes steeper when

the probability distortion in losses increases (moving from the middle panel to the right panel),

revealing that probability distortion in losses plays an important role in determining the decision

to insure. Additionally, the more negatively skewed the yield, the higher the surplus: the farmer

incurs large losses with small probabilities, as in the left panel, but he overweights these small

probabilities such that his willingness to insure increases above the offered premium, making

surplus positive. Symmetrically, the more positively skewed the yield, the lower the surplus: as

before, the farmer incurs small losses with high probabilities, but he underweights these high

probabilities such that his willingness to insure decreases; however, WTP nevertheless remains

large enough to generate a positive surplus, which leads the farmer to insure.

Finally, we consider the impact of loss aversion. In all of the panels in Figure 3, the darker

the line, the greater the degree of loss aversion. Overall, we find that the greater the loss aversion

parameter, the greater the surplus from insurance. First, the more negatively skewed the yield,

the greater the surplus: the farmer incurs large losses with small probabilities and, due to loss

aversion, these losses loom larger than gains such that he is more willing to insure. On the

contrary, the more positively skewed the yield, the lower the surplus: although the farmer incurs

losses with high probabilities, as these losses become smaller they loom less and less large relative

to gains, such that he is less and less willing to insure.

As in the previous section, we further analyze these findings by regressing simulated farmer

surplus (WTP −ρ) on preference parameters, this time incorporating yield skewness. We specify

two empirical models, one without interaction terms between yield skewness and CPT preference

parameters (Eq. 9) and one with these interaction terms (Eq. 10).

Surplus = β0 + βa(1− a) + βλ(λ− 1) + βγ(1− γ) + βδ(1− δ) + βκκ+ ε (9)
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Surplus = β0 + βa(1− a) + βλ(λ− 1) + βγ(1− γ) + βδ(1− δ) + βκκ (10)

+βκ,aκ(1− a) + βκ,λκ(λ− 1) + βκ,γκ(1− γ) + βκ,δκ(1− δ) + ε

Marginal (semi-elasticity) effects for yield skewness are computed at κ = −0.683 which is the

value found for the skew-normal distribution that fits Babcock (2015)’s Beta distribution (see

section 2.2, Table 1); CPT preference parameter values are those described by Tversky and

Kahneman in the previous section. OLS estimation results for Eq. 9 and Eq. 10 are presented

in Table 5.

Table 5. OLS regression of surplus ($/ac) for an
85% coverage level (Eq. 9 and Eq. 10)

(1) (2)
Without interaction With interaction

Parameter Marginal Parameter Marginal
estimate effect estimate effect

β0 -4.11∗∗∗ -4.11∗∗∗
(0.15) (0.10)

βa -31.06∗∗∗ 0.27∗∗∗ -31.06∗∗∗ 0.40∗∗∗
(0.27) (0.002) (0.19) (0.002)

βλ 4.16∗∗∗ 0.09∗∗∗ 4.16∗∗∗ 0.13∗∗∗
(0.06) (0.001) (0.04) (0.001)

βγ 6.69∗∗∗ -0.04∗∗∗ 6.69∗∗∗ -0.06∗∗∗
(0.27) (0.002) (0.19) (0.002)

βδ 69.29∗∗∗ -0.48∗∗∗ 69.29∗∗∗ -0.66∗∗∗
(0.28) (0.002) (0.19) (0.002)

βκ -7.76∗∗∗ 0.05∗∗∗ 1.82∗∗∗ 0.09∗∗∗
(0.07) (0.000) (0.16) (0.000)

βκ,a 20.60∗∗∗
(0.29)

βκ,λ -2.60∗∗∗
(0.06)

βκ,γ -4.45∗∗∗
(0.29)

βκ,δ -38.29∗∗∗
(0.30)

#Obs 21,609 21,609
R squared 0.8116 0.9088
Adj R squared 0.8116 0.9088

Notes: Standard errors are in parentheses. Marginal effects are computed
as the change in surplus for a proportional 1% change in parameter value
at the values elicited by Tversky and Kahneman (0.88 for risk aversion a,
2.25 for loss aversion λ, 0.61 for probability distortion in gains γ and 0.69
for probability distortion in losses δ) and at skewness value κ = −0.683
(the skewness of the skew-normal distribution that fits Babcock’s Beta
distribution); ∗∗∗ denotes statistical significance at the 1% level.

First we consider model (1) in Table 5 (no interaction). All parameters are highly significant.

Estimated parameters for the CPT independent variables have similar signs to those found in

section 3.2 (see Table 4). However, this similarity must be viewed with some caution given that
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the yield distribution was different and price was random in the previous estimation. As in the

first regression, this indicates that loss aversion and probability distortion increase the incentive

to insure, while risk aversion decreases it. The interesting result in this section concerns the

estimated parameter for skewness (βκ). As expected, this parameter is negative and highly

significant, suggesting that the incentive to insure decreases when the skewness parameter κ

increases from negative values to positive values. When κ increases, the farmer incurs lower

and lower losses with higher and higher probabilities, and greater and greater gains with lower

and lower probabilities. As depicted in the graphical analysis, the negative estimated parameter

indicates that the expected utility of gains offsets the expected utility of losses such that the

incentive to insure decreases. The marginal effect computed at κ = −0.683 indicates that a 1%

more negatively-skewed distribution leads to a $0.05/ac increase in surplus. This effect is small

compared to the marginal effect of probability distortion (with an absolute value of $0.48/ac).

Of all the preference parameters, probability distortion in losses has the greatest marginal effect

on surplus. The finding that yield skewness has a negative impact on the decision to insure

may be considered as similar to the results of Coble et al. (1996) who study the impact of the

variance of return to insurance on participation in a Multiple Peril Crop Insurance program using

an EUT framework. These authors indeed find a negative impact of return variance, indicating

that farmers who expect to receive smaller but more frequent indemnities (small variance) are

more likely to purchase insurance than producers for whom indemnities are rare but potentially

large (large variance). Since they compute the variance of return to insurance only on the left

tail of the yield distribution (i.e., below the guaranteed yield), ceteris paribus, the increase in

the variance of return to insurance reflects an increase in negative skewness.

In this study, we are interested in the channel through which yield skewness impacts insur-

ance decisions, and especially in the role of CPT preferences. To this end, we also estimate a

model that includes interaction terms between skewness and CPT parameters (see model (2) in

Table 5). The signs and the associated significance levels of the estimated parameters considered

in model (1) are unchanged except for the skewness parameter, which becomes positive with

the inclusion of these interaction terms. The estimated parameters associated with the variables

interacted with κ are also highly significant. Model (2) shows that skewness has a direct positive

impact on surplus and both positive and negative indirect impacts through the CPT preference

parameters. All marginal effects have the same sign and significance as in model (1), yet they

are higher in absolute value. The parameter of greatest magnitude is again probability distor-
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tion in losses. Next, we consider interaction effects. When κ increases, the farmer incurs lower

and lower losses with higher and higher probabilities and incurs greater and greater gains with

lower and lower probabilities. First, the incentive to insure increases with risk aversion when κ

increases: as the distribution becomes more skewed to the right, risk aversion in gains offsets

risk seeking in losses such that the incentive to insure increases. Second, the incentive to insure

decreases with loss aversion when κ increases: when loss aversion increases, losses loom larger

and larger but when κ increases at the same time, losses are smaller and smaller, causing the

overall interaction effect to be negative. Third, the interaction coefficients between probability

distortions and skewness are both negative: when κ increases, large gains are less and less likely

and small losses are more and more likely, such that on the one hand, overweighting of low

probability gains decreases the incentive to insure and, on the other hand, underweighting of

high probability losses also decreases the incentive to insure. Among the four interaction effects,

the largest in absolute value is that associated with probability distortion in losses.

We can now proceed with the following conclusion.

Result 4 Overall, the incentive to insure decreases when the yield distribution moves from nega-

tive skewness to positive skewness. When interaction effects are accounted for, probability distor-

tion in losses has the largest impact on surplus, such that skewness has two competing effects on

the incentive to insure: (i) a direct positive effect, through which smaller losses with higher proba-

bilities offset greater gains with lower probabilities; (ii) an indirect negative effect, through which

high (low) probabilities are under(over)-weighted, such that smaller losses with higher probabili-

ties no longer offset greater gains with lower probabilities. Taken together, the indirect negative

effect of skewness overrides the direct positive effect, and the combined effect of skewness and

probability distortion in losses is particularly important in shaping farmer insurance decisions.

5. Conclusion

In this paper, we aim to explain the decisions regarding whether or not to purchase crop insurance

within a behavioral economic framework. To accomplish this, we model this decision as a lottery

choice and compute farmer willingness to pay as a function of the preference parameters identified

by cumulative prospect theory (CPT). Simulating a broad set of possible parameter combinations,

we find that CPT preferences can contribute to explaining insurance decisions. In particular,

our results indicate that probability distortion in losses plays a large role in determining WTP,
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serving to increase the incentive to insure relative to the EUT assumption of no probability

distortion. Hypothesizing that insurance decisions are shaped by CPT preferences especially

when yields are skewed, we indeed find that distributional assumptions shape farmer insurance

choices both directly and indirectly through the interaction of the yield skewness parameter with

CPT preference parameters, and in particular with probability distortion in losses.

The effects we find are far from negligible. First, when considering revenue insurance and

a coverage level of 85% (section 3.2), the estimated parameters for Eq. 8 (see Table 4, whole

sample) indicate that moving from an assumption of no probability distortion in losses (δ = 1)

to Tversky and Kahneman’s finding (δ = 0.69), i.e. a 31% increase in distortion, translates to

a $39.79/ac increase in farmer surplus generated by insurance. This represents some 47% of

the unsubsidized premium ($84.01/ac, see Table 2, column (3)), and as much as 76% of the

subsidized premium ($52.08/ac, see Table 2, column (4)) given the subsidy rate (38%) currently

offered. Similarly, when considering crop yield insurance, a coverage level of 85%, and interaction

effects with skewness (section 4), moving from no probability distortion in losses to Tversky and

Kahneman’s degree of probability distortion in losses raises farmer surplus by $29.59/ac, which

amounts to 83% of the subsidized premium that was offered for the Actual Production History

(APH) insurance contract in York county (NE) in 2009 ($35.47/ac).8

Thus, our results raise the important question regarding the actual nature of farmer prefer-

ences, and, assuming they are CPT-like, of the particular parameter values that best characterize

them. If these parameters are assumed to be equal to those found by Tversky and Kahneman, we

find that Babcock is right to assume that farmers do buy insurance. Our sensitivity analysis re-

veals, however, that other parameter combinations can lead to the simulated farmer deciding not

to purchase insurance. While applications of CPT in the literature often assume that preference

parameter values are equal to those elicited by Tversky and Kahneman, we find that the values

at which these parameters are set, especially with respect to probability distortion in losses, can

have a significant impact on farmer insurance choices. Since it is unlikely that all farmers share

the same preferences, this result may contribute, along with more standard adverse selection and

moral hazard considerations, to explaining why subsidizing insurance appears to be necessary in

order to incentivize farmers to purchase insurance.

Given that risk parameters are unobservable, attempts to elicit them have met with chal-

lenges (Just et al., 2010). Tversky and Kahneman experimentally estimated the risk preferences
8See Risk Management Agency (RMA)’s 2009 ‘Summary Of Business’ dataset for corn, available at

https://prodwebnlb.rma.usda.gov/apps/SummaryofBusiness/
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of a sample of students under particular specifications for the utility function (using the same

parameter for risk attitudes in gains and losses) and the probability weighting function, which

generated an estimated parameter value of 0.69 for the probability distortion in losses. When

this parameter has been elicited for farmers, however, it has differed from this cardinal value

due to differences between the samples and the empirical specification and estimation methods

used. Following a specification similar to Tversky and Kahneman, Bougherara et al. estimate

a value for probability distortion in losses of 0.84 among a sample of French farmers. Using

a Prelec probability weighting function and the same parameter for probability distortion in

gains and losses, Bocquého et al. find a value of 0.66 among another sample of French farmers.

Using the same specifications without the use of ML estimation, Liu finds a value of around

0.69 among a sample of Chinese cotton farmers, while Nguyen and Leung find a value of 0.75

among a sample of Vietnamese fishermen, and Tanaka et al. find a value of 0.74 among a sample

of Vietnamese villagers. Finally, in contrast to these results, Humphrey and Verschoor find an

S-shaped distortion function (δ = 1.38) among a sample of Ugandan farmers.

This short review reveals the challenge of eliciting preference parameters that are intended

to have a general scope: all of the above-mentioned figures are contingent on the specific samples

used and technical assumptions made in order to estimate them. The challenge is even more

substantial considering that these figures only represent mean sample estimates, whereas indi-

vidual heterogeneity is likely to exist (Harrison and Rutström, 2009) and this heterogeneity is

mostly unobserved. In identifying directions for future research in production economics and

farm management, Chavas et al. (2010) point to the role of risk/uncertainty and heterogeneous

managerial abilities as the top two most important priorities. Research that elicits heterogeneous

risk preferences addresses both of these priorities, and attempts to do so have already been made

(Hey and Orme, 1994; Harrison and Rutström, 2009). At the very least, knowing the distribution

of individual risk preferences would enable practitioners to fine tune insurance programs in order

to set subsidy rates at efficient levels and avoid the unnecessary waste of public funds, a long-

debated issue especially in the U.S. (Goodwin and Smith, 2013). For this reason, we contend

that studies such as Babcock’s and ours provide valuable insights regarding the determinants

of farmer insurance choices and the key preference parameters that should guide the design of

insurance programs.
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A. Certainty Equivalent Returns from Crop Insurance with Cumulative Prospect

Theory Using Three Alternative Reference Points for Corn

Table 6 presents certainty equivalent returns for the base case of parameters for corn and the

three reference points (R1, R2, and R3) as in Babcock (2015: Table 3) and provides the results

of our own replication. Overall, our replication yields similar results. The optimal coverage level

is 0.85 for reference points R1 and R2. There is a wider range of coverage levels in our replication

for R3. We find the highest certainty equivalent returns for coverage levels 0.75 and 0.70, whereas

Babcock finds the highest certainty equivalent return is for a coverage level of 0.75 only.

Table 6. Certainty Equivalent Returns from Crop Insurance with
Cumulative Prospect Theory Using Three Alternative Reference
Points for Corn: Babcock’s results vs. our replication

Reference point R1 Reference point R2 Reference point R3

Coverage Babcock’s Our Babcock’s Our Babcock’s Our

level Table 3 replication Table 3 replication Table 3 replication

α Column 1 Column 2 Column 3

0.85 -2.1 -5.0 46.9 46.2 10.3 2.8

0.80 -5,3 -7.3 15.5 15.1 17.7 12.1

0.75 -10.5 -11.9 -2.3 -2.5 20.1 16.1

0.70 -16.5 -17.6 -10.9 -11.0 18.8 16.1

0.65 -22.7 -23.7 -18.7 -19.1 15.3 13.3

0.60 -27.8 -28.6 -25.5 -26.0 13.3 12.1

0.55 -32.6 -33.3 -31.1 -31.7 10.0 9.2

0.50 -36.4 -37.1 -35.7 -36.2 7.4 6.9

Note: Reference points are defined in Babcock (2015: p.1374) as follows; R1 = E(R) + ρ(α)(1 − s(α)) with

xi = Pi.yi + Ii −R1, R2 = E(R) with xi = Pi.yi + Ii −R2, R3 = ρ(α).(1s(α)) with xi = Ii −R3.
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