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Abstract. The decision to adopt one or another of the sustainable land management
alternatives should not be based solely on their respective benefits in terms of climate
change mitigation but also based on the performances of the productive systems used by
farm  holdings,  assessing  their  environmental  impacts  through  the  cost  of  fertilizer
resources  used.  This  communication  uses  the  symbolic  clustering  tools  in  order  to
analyse  the  conditional  quantile  estimates  of  the  fertilizer  costs  of  yearly  crop
productions in agriculture, as a replacement proxy for internal soil erosion costs. After
recalling the conceptual framework of the estimation of agricultural production costs, we
present  the  empirical  data  model,  the  quantile  regression  approach  and  the  interval
principal  component  analysis  clustering  tools  used  to  obtain  typologies  of  European
countries on the basis of the conditional quantile distributions of fertilizer cost empirical
estimates. The comparative analysis of econometric results for main products between
European countries illustrates the relevance of the typologies obtained for international
comparisons to assess land management alternatives based on their impact on agricultural
carbon sequestration in soils.
Keywords: principal  component  analysis,  divisive  clustering,  interval  estimates,
quantile regression, input-output model, symbolic data analysis, agricultural production
cost, fertilizer, yearly crops, micro-economics.

“Applied economists increasingly want to know what is happening to an entire
distribution, to the relative winners and losers, as well as to averages.” 

Angrist et Pischke [1]

1  Economics of agricultural carbon sequestration in soils

Signatory  States  to  the  2015  Paris  Agreement  have  set  a  common  goal  of
achieving carbon neutrality. According to a logic of net emissions flow adopted
by several European countries, France has adopted a Climate Plan in July 2017
with a target  of  zero  net  emissions (ZEN) of  greenhouse  gases,  at  the 2050
horizon (Quinet [31]).
Carbon sequestration in soils is one of the means proposed to achieve common
goals of reducing greenhouse gas emissions while improving the productivity
and  sustainability  of  agricultural  land  in  both  developed  and  developing
countries (SM CRSP, 2008). In addition to their soil carbon storage capacity,
sustainable  land  management  technologies  must  also  benefit  farmers  by
increasing yields and reducing production costs.



For the European Union, a group of experts from the European Commission on
agricultural markets also proposes to encourage farmers to store carbon on the
basis of adapted agricultural practices (EC, 2016). However, on one hand, the
evolution of the Common Agricultural Policy (CAP) regulatory frameworks by
2020  shows  that  the  proposed  instruments  alone  cannot  support  large-scale
projects on the agricultural soil carbon storage in Europe, with a future CAP
budget likely insufficient  to support  limitation objectives of carbon emission
(Jevnaker and Wettestad, [19]). Hence, the decision to adopt one or another of
the sustainable land management alternatives should not be based solely on their
respective benefits in terms of climate change mitigation but also based on the
consideration  of  the  farmers,  assessing  comprehensively  the  productivity,
resource utilization and environmental impact of the productive system.
We propose  to  better  estimate  the  economic  cost  of  erosion  for  farmers  by
considering  the  costs  of  restoring  soil  fertility,  conceived  as  an  ecosystem
service  for  the  benefit  of  agriculture.  The  economic  evaluation  of  erosion
distinguishes between two types of costs: on-site and off-site costs: in this paper,
we focus on the on-site costs and in particular the costs induced by the resulting
loss of nutrients. A review of the literature (Panagos et al., [29]) suggests that
estimates of the cost of soil erosion due to nutrient loss are significant and vary
greatly,  depending,  without excluding factors  such as soil  type and cropping
practices, also on the type of crops grown and the production regions. In order
to evaluate erosion costs due to nutrient losses, we estimate the production costs
of  fertilizers  using  an  input/output  methodology,  conditioned  by  a  proxy  of
carbon deficit in soil.
The integration of agriculture in the 27 Member States of the European Union
(EU) have raised in the context of competitive markets as markets subject to
regulation,  recurring  needs  for  estimating  costs  of  production  for  major
agricultural products, all along the successive reforms of the CAP). The analysis
of  agricultural  production  costs  is  a  tool  for  analyzing  economic  results  of
farmers:  it  allows assessing the price competitiveness  of  farmers,  one of the
major  elements  for  development  and  sustainability  of  food  chains  in  the
European regions. To meet the needs of simulations and impact assessment in
the  various  common  market  organizations,  we  must  be  able  to  provide
information on the entire distribution of production costs for the assessment of
public agricultural policy options. Based on the observation of asymmetry and
heterogeneity  within  the  empirical  distribution  of  agricultural  inputs,  we
propose  a  methodology  adapted  to  the  problem of  estimating  the  empirical
distributions of fertilizer costs of production for the main agricultural products
in  a  European  context  where  agricultural  holdings  remain  mainly  oriented
towards multiple productions (Desbois et al. [11]).
We  first  present  the  empirical  model  for  estimating  the  fertilizer  costs  of
production conditioned by wheat yield as a soil carbon deficit proxy, deriving it
from an econometric cost allocation approach inspired by Divay and Meunier
[14]  using  microeconomic  data  to  build  an  input-output  matrix.  Then,  we
introduce  the  estimation  methodology according  to  the  conditional  quantiles
proposed  by  Koenker  and  Bassett  [21].  Next,  we present  the  symbolic data



analysis  procedures  used  to  explore  the  empirical  estimates  of  conditional
quantile distribution intervals based on the concepts and methods provided by
the symbolic approach of Billard and Diday [2]. Then, we present the graphs of
results from the analysis tools of the symbolic data applied to the estimation
intervals of the conditional quantiles. Eventually, we conclude on the relevance
of this approach, proposing an extension of this type of analysis at the regional
level.

2  Conceptual framework and methodological aspects

First, we present the methodology for estimating input costs, among which the
fertilizer costs. Secondly, we introduce the factorial analysis and the clustering
procedure of the estimation intervals in the formalism of the symbolic data.

2.1 The  empirical  model  for  estimating  the  fertilizer  costs  of
production

Inspired by Divay and Meunier [14], the allocation of the sum xi  of the input
costs  for  farm  holding  i is  made  by  linear  decomposition  along  the  gross

products  Y i
j  of farm holding  i for  each production  j,  where  ∂i is the wheat

yield of farm i, and  ui is a random vector with a zero mathematical expectation:

(1) x i=β0∂i+∑
j=1

P

β jY i
j+ui

The wheat yield is used as an empirical albeit relatively imprecise proxy of the
soil organic carbon deficit due to annual crop production (Oldfield et al. [28]).
As Cameron and Trivedi [4], we assume that  the data generator process is a
linear model with multiplicative heteroscedasticity characterized in matrix form
by:

(2) x=[ ∂Y ] ' β+u with u=[ ∂Y ]' α ×ε and [ ∂Y ]' α>0

where  ε∼ iid [0 ,σ ] is  a  random-vector  identically  and  independently

distributed with zero mean and constant variance  σ 2.  Under this assumption,

μq(x∨[ ∂Y ] , β ,α), the  q t h conditional  quantile  of  the  production  cost  x,

conditioned by Y and the α and β parameters, is derived analytically as follows:
(3)

μq(x∨[ ∂Y ] , β ,α)=[ ∂Y ]
'

[ β+α×F ε
−1 (q)]=[ ∂Y ] ' γ .

where F ε is the cumulative distribution function (CDF) of the errors.
The technical coefficient for the jth product of the qth quantile of the ferilizer cost
is defined by the jth component of the multivariate slope vector:



(4)  γ j (q)=[β+α×F ε
−1 (q) ] j.

Following D’Haultfoeuille and Givord [15], three models can be derived:

i) x=[ ∂Y ]
'

β+u with   u=Kϵ, homoscedastic  errors V (ϵ∨[ ∂Y ])=σ 2
,

denoted as the  location-shift  model, i.e.  the linear  model of conditional
quantile  with  homogeneous  slopes;  while  Y ' α=K  is  constant,  the

conditional quantiles μq(x∨[ ∂Y ] , β , α)=[ ∂Y ]
'

β+K Fe
−1 (q ) get all the

same β slope, but differ only by a constant gap, growing as q, the quantile
order, increases;

ii) x=[ ∂Y ]
'

β+([ ∂Y ]' α)ε  and  [ ∂Y ]
'

α>0 with  heteroscedastic  residuals,

referred  as  the  location-scale  shift model,  i.e.  the  linear  model  of
heterogeneous conditional quantile slopes.

iii) X=[ ∂Y ]
'

γ ξ with  ξ  random  variable  independent  of  Y  following  a

uniform distribution over the interval [0,1] such as ξ ⟶[ ∂Y ]' γ ξ be strictly

increasing  whatever  Y ,  designated  as  the  random coefficient  model.  ξ
corresponds to a random component determining the rank of the individual
within the distribution of X . Under the strong distributional hypothesis of

rank  invariance,  the  random  coefficient  γ q represent  the  effect  of  a

marginal change in Y  for agricultural holdings located at the q t h quantile

of  the  ξ  distribution.  This  distributional  assumption  of  rank  invariance
means that median farms in terms of input productivity would maintain the
q=0.5 rank, regardless of the different levels of production Y i registered

for the ith farm holding.

2.2 The procedures for estimating and testing conditional quantiles
The quantile regression is defined for each quantile of order q as the solution of
a problem of minimization of the sum of the deviations in absolute value (L1

 norm):
(5)  

β̂ (q )= argmin
β∈ RP+1{ ∑

i∈{i/ x i≥[ ∂i

Y i]
'

β}
q|xi−[ ∂iY i]

'

β|+ ∑
i∈ {i / x i<[ ∂i

Y i]
'

β}
(1−q)|x i−[ ∂iY i]

'

β|}



can be written in matrix form (6):

β̂ (q )= argmin
β∈ RP+1{qe '(X−[ ∂Y ]

'

β)δ1[X−[ ∂Y ]
'

β]+(1−q)e '([ ∂Y ]
'

β−X)δ 1[[ ∂Y ]
'

β−X ]}
with e ’(X−[ ∂Y ]

'

β≥0), index of farms i such as  x i−[ ∂i

Y i]
'

β≥0, and δ 1,

vector of absolute deviations.
Thus,  the linear  optimization problem solving methods developed for  the L1

(absolute deviation) regression easily  extend to quantile  regression (Koenker
and  d'Orey,  [22]).  Although  the  simplex  method  (Dantzig [9])  has  an

algorithmic complexity in Ο (n6), the Karmarkar [20]’s method of the "interior-

point"  is  in  practice preferable  as  soon  as  the  sample  size  becoming large,

because of its reduced algorithmic complexity to Ο (n3,5). For large samples,

Portnoy and Koenker [30] have shown that a combination of the "interior-point"
algorithm and a smoothing algorithm for the objective function  by Madsen and
Nielsen [26] makes quantile regression calculations competitive with those of
least squares regression.
The weighted conditional quantiles have been proposed by Koenker and Zhao
[23]  as  L-estimates1 in  linear  heteroscedastic  models.  The
W={wi , i=1,…,n}  weighting  of  the  observations leads  to  a  quantile
regression scheme solving the following minimization problem (7):

β̂ω (q )= argmin
β∈ RP+1{ ∑

i∈{i/ x i≥[ ∂i

Y i]
'

β}
w iq|xi−[ ∂iY i]

'

β|+ ∑
i∈ {i/ x i<[ ∂i

Y i]
'

β}
wi (1−q )|x i−[ ∂iY i]

'

β|}
The  weighted  estimation  procedure  uses  the  "predictor-corrector"
implementation of the primal-dual algorithm proposed by Lustig et al. [25]
Given the size of the Farm Accounting Data Network (FADN) sample, its non-
random selection  and  the  existence a  priori  of  distinct  sub-populations  (e.g.
specialized types of farming), we opted for the resampling method, based on the
Markov Chain Marginal Bootstrap (MCMB) technique. Without  distributional
assumption,  this  method  yields  robust  empirical  confidence  intervals  in  a
reasonable computation time (He and Hu [18]).
For a given product  j0such as yield crops and the  lth European country, the

estimation interval  of technical coefficients for  q thconditional  quantile of the
fertilizer costs

1 An  L-estimate  is  an  estimate  defined  by  a  linear  combination  of  ordinal
statistics.



(8)   zl
q=[ Inf ¿

j0(q);¿ γ̂l
j0(q)]=[ z lq; zlq ] 

is obtained by MCMB.

2.3 Symbolic PCA of the fertilizer cost distributions
The symbolic approach has been introduced by Diday [13] in order to take in
account  several  values  rather  a  single  one  attached  to  a  variable  into  the
framework  of  exploratory  methods  of  data  analysis.  Within  this  conceptual
framework  of  symbolic  data  analysis,  the  extension  of  principal  component
analysis (PCA) to interval data was initially proposed by Cazes  et al. [5] and
later improved by Chouakria et al. [7] with the Vertex and the Center methods
using either the vertices or the center of the hyper-rectangle defined by interval
values  as  a  multidimensional  support  for  the  initial  PCA.  In  this  paper,  we
propose  to  assess  different  PCA  variants  around  the  Vertex  or  the  Center
Methods,  proposed  by  Garro  and  Rodriguez  [24]  in  order  to  maximize  the
variance of the projections or to minimize the distance between the vertices and
the projections of the hyper-rectangle, on the basis of distributional data.

As symbolic objects, the L national  distributions Ω={ω1 ,⋯ ,ωl ,⋯ωL } are

described by a set of Q=5 descriptors 2, which are the estimation intervals of

{z0.10 , z0.25 , z0.50 , z0.75 , z0.90},  coding  for  the  D1  and  D9  deciles  combined
with the three quartiles Q1, Q2 and Q3.
Let define the set of  L×Q “within interval”-value matrices,

 M={Z∈ M L×Q∨z l
q∈ [ zlq ; zlq ]}.

2.3.1 The center-PCA of the interval distribution for quantile estimates
Let us define U ∈ M , the center-interval matrix of Z,  by:

U=[U1 ,⋯ , U q ,⋯ , UQ ]=[u1
1 ⋯ u1

Q

⋮ ul
q ⋮

uL
1 … uL

Q] with ul
q=

z l
q+z l

q

2
 ;

 V=[v1
1 ⋯ v1

Q

⋮ v l
q ⋮

v L
1 … vL

Q] with  vl
q=[ z lq− μ̂q

√L σ̂q ;
z l
q− μ̂q

√L σ̂q ]

2 This  choice  of  a  small  number  of  descriptors  was  made  for
comparative convenience with some more classical graphic approaches (Desbois  et al.
[11]); however, like this earlier work, it could be extended without disadvantage to sets
of descriptors of cardinality  Q=9 (deciles), or even  Q=99 (percentiles) if the analysis
objectives required it.



where μ̂q and σ̂ q are respectively the mean and the standard deviation of the qth

column vector U q of the matrix U. 

According to Cazes et al. [5], the interval principal components are defined by

the following equations:

(9) φ l
q= ∑

k=1 , K ;ζ k
q<0

(u l
k− μ̂k )ζ k

q+ ∑
k=1, K ;ζ k

q≥0

(u l
k− μ̂k )ζ k

q

(10) φ l
q= ∑

k=1 , K ;ζ k
q<0

(u l
k− μ̂k )ζ k

q+ ∑
k=1, K ;ζ k

q≥0

(u l
k− μ̂k )ζ k

q

 where  ζ k
q is the  qth coordinate of the  kth eigenvector  of  U 'U ,  the variance-

covariance matrix of U.

According to Rodriguez, Diday and Winsberg [33], the pattern of duality in the

center-PCA implies the following relationships: 

(11) φh
q=max[ ∑

k=1 , …, Q;ζ k
q<0

vh
k ζ́ k

q+ ∑
k=1 ,K ;ζ k

q≥0

vh
k ζ́ k

q ;−1]
(12) φh

q=min[ ∑
k=1 , …,Q ;ζ k

q< 0

vh
k ζ́ k

q+ ∑
k=1 , K ; ζ k

q≥0

vh
k ζ́ k

q ;1]
where ζ́ k

q is the qth coordinate of the hth eigenvector  of V V ' the inertia matrix

of  V,  and  vh
k=¿ {v lhk }

lh∈ L
 respectively  vh

k=Inf {vlhk }
lh∈ L

.   This  duality  pattern

determines the infimum and the supremum of the hyper-rectangle defined by the

projection of the qth vector of V in the direction of the hth principal component of

VV’.

2.3.2 The ‘best point’ PCA of the interval distribution for quantile estimates
In the bivariate case (q=2) with the Q1 (Z0.25) and Q3 (Z0.75) quartiles, the

vertex submatrix  Zlassociated with the  lth country, is defining the  n=2q=4
vertices of a Q1 by Q3 rectangle H l (cf. figure 1):



(13)  Zl=

Z0.25 Z0.75

{zl
0.25

zl
0.25

zl
0.25

zl
0.25

z l
0.75

z l
0.75

z l
0.75

z l
0.75} . 

Via a similar process for  l=1 ,…, L, let us define Z=(Z1 ,…,Z l ,…, ZL)
'
,

the  vertex-interval  matrix,  by  its  submatrices  Zl of  the  lth country  ωl,

represented by H l the hyper-rectangle build with nl=2ql vertices of the q l non-

trivial intervals.

Zl=[ zs1

1

⋮
z sh

1

⋯
⋮
…

⋮
zsn

l

1
⋮
…

zs1

q

⋮
zsh
q

⋯
⋮
…

⋮
zsn

l

q
⋮
…

zs1

q'

⋮
zsh
q'

⋮
zsnl

q '

…
⋮
…
⋮
…
⋮
…
⋮
…

zs1

Q

⋮
zsh
Q

⋮
zsn

l

Q ]
In this way, the vertices of hyper-rectangles H l are vectors of RQ, while the Q

estimates of the conditional quantiles are elements of RN, with N=∑
l=1

L

nl. 



Z0.25

z3

Inf(ߛሶǤହ)

Sup(ߛሶǤହ)

Sup(ߛሶǤଶହ)Inf(ߛሶǤଶହ)

Min_Q1 Max_Q1 Min_Q3 Max_Q3

… … … … …

߱� Inf(ߛሶǤଶହ) Sup(ߛሶǤଶହ) Inf(ߛሶǤହ) Sup(ߛሶǤହ)

… … … … …

߱�ᇲ Inf(ߛሶᇲǤଶହ) Sup(ߛሶᇲǤଶହ) Inf(ߛሶᇲǤହ) Sup(ߛሶᇲǤହ)

… … … … …

Z0.25 Z0.75

… … …

߱� [Inf(ߛሶǤଶହ); Sup(ߛሶǤଶହ)] [Inf(ߛሶǤହ); Sup(ߛሶǤହ)]

… … …

߱�ᇲ [Inf(ߛሶᇲǤଶହ); Sup(ߛሶᇲǤଶହ)] [Inf(ߛሶᇲǤହ); Sup(ߛሶᇲǤହ)]

… … …

Sup(ߛሶᇲǤହ)

Inf(ߛሶᇲǤହ)

Inf(ߛᇲǤଶହ) Sup(ߛᇲǤଶହ)

Min_Q1

Min_Q3 Max_Q3

Max_Q1

ሶǤଶହߛ •

ሶᇲǤହߛ •

ሶᇲǤଶହߛ •

ሶǤହߛ •

Z0.75

ωl

ωl’

Fig. 1. The symbolic coding of the estimation intervals for the technical coefficients of the lower
(Q1) and higher (Q3) quartiles of fertilizer costs 

Let us apply PCA to Z∈ M , a within-interval value matrix. The kth principal
component of the lth country is given by:

(14) ψ l
k=∑

q=1

Q

( zlq−μq)w q
k

where  μq=
1
L
∑
l=1

L

z l
q is  the  average  of  the  qth conditional  quantile  of  cost

estimates  and  wq
k,  the  qth coordinate  of  the  kth eigenvector  of  the  variance-

covariance matrix of Z.

Defining the supplementary normalised vertex ~Z=(~Z1 ,…,~Z l ,…,~ZL)
'
 by its

lth submatrix, where σ q is the standard deviation of Zq

~Z l=[
z l

1−μ1

√Lσ1

⋮
z l

1−μ1

√Lσ1

⋯
⋮
…

⋮
z l

1−μ1

√Lσ1

⋮
…

zl
q−μq

√Lσq

⋮
zl
q−μq

√Lσq

⋯
⋮
…

⋮
zl
q−μq

√Lσq

⋮
…

z l
Q−μQ
√LσQ

⋮
z l
Q−μQ
√LσQ

⋮
z l
Q−μQ
√LσQ

]



Each shvertex of hyper-rectangle of the lth national distribution of fertilizer cost

estimate 
~
Z l  can be projected on the principal components of the Z-PCA, with

the following kth coordinates:

 (15)  csh
k =∑

q=1

Q
~zsh
q wq

k .



According to Rodriguez [32], the minimum and maximum of the kth coordinate
for each estimation interval for the lth country can be computed as follows: 

(16) ψ l
k= Inf {c sh

k }
sh=1 ,… ,nl

= ∑
{q∨wq

k<0}
( z lq−μq)wq

k+ ∑
{q∨wq

k≥0}
(zlq−μq)wq

k

(17) ψ l
k= ¿ {cshk }

sh=1 ,… ,nl
= ∑

{q∨wq
k<0}

( z lq−μq)wq
k+ ∑

{q∨wq
k≥0}

(zlq−μq)wq
k

Let us denote t h the  eigenvectors of ~Z~
Z '  for h=1,…, H ,  the coordinate of

the qth quantile estimates on the hth principal component is given by:

(18) rh
q=∑

s=1

N
~Z '

q
s t s

h

According  to  Garro  and  Rodriguez  [24],  by  projection  of  the  qth quantile
estimate on the hth principal component in the direction of t h, the infimum and

supremum values of the hyper-rectangleH l are computed as follows:

(19) χ l
q= Inf {rslq }

sl=1 ,…,nl
= ∑

{s∨t s
h<0 }

~z ' l
s t s

h+ ∑
{s∨ts

h≥0 }

~z' l
s t s

h

(20) χ l
q= ¿ {rslq }

sl=1 ,…,nl
= ∑

{s∨t s
h<0 }

~z ' l
s t s

h+ ∑
{s∨ts

h≥0 }

~z' l
s t s

h
 

Thus, the Z-PCA provides a dual representation of the fertilizer empirical cost
distributions represented by their estimation intervals, which are the symbolic
objects, and conditional quantiles which are the descriptors of these symbolic
objects. 

Let  us  define  ℧ (Z )={w1
Z ,…ws

Z ,…,wS
Z },  the    orthonormal  basis  of

eigenvectors issued from the variance-covariance matrix of Z, and the function

 Ψ (Z ):M❑
→

R+¿∪ {0 }¿ based on the Euclidean norm ‖.‖,

such as  Ψ (Z )=∑
l=1

L

‖~Z l−Pr℧ (Z) (~Zl)‖
2

and  where  Pr℧ (Z ) (~Zl ) is  the  projection  of  the  sub-matrix  
~
Z l,  coding  the

vertices of the hyper-rectangle  H l ,  on  ℧ (Z ), as an appropriate orthonormal
basis.
The interval-valued matrix Z¿ that solves the optimization problem

(21)  Min
Ψ (Z)
Z∈ M

 



is estimated through Procedure (below), using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm, in order to find the minimal distance to ~Z ,the vertex
matrix.

Let us define the function Λ (Z , s) :M×N❑
→

R+¿ ¿ such as Λ (Z , s)=∑
h=1

s

λh,

the variance of the first s components issued from the PCA of Z, where λh is the

hth eigenvalue associated to the hth eigenvector of ℧ (Z ).
The interval-valued matrix Z s that solves the optimization problem 

(22) Max
Λ (Z , s)
Z∈ M

 

is estimated through Procedure 2 (below) using the BFGS algorithm, in order to
maximize the variance of the first s components.

Procedure 1   Minimizing the squared distance   
Input: 
 Z∈ M ,  a L×Q matrix with s principal components;
TOL, a numerical threshold of tolerance;
ITER, a maximum number of iterations.
i)   Z    ← U, the center matrix as the initial value;
ii)  Z¿ ← lbfgs (Z, objective = Ψ (Z ), TOL, ITER) ;

iii) Compute the [ψ L
¿ ;ψL

¿ ] coordinates, 

applying (16) & (17) duality relationships; 

iv) Return [ψ L
¿ ;ψL

¿ ]
Source: adapted from Garro and Rodriguez [24];
Nota bene: lbfgs is a function implementing BFGS algorithm, from the nloptr 
package by Ypma et al. [35].

Procedure 2   Maximizing the variance of the first components  
Input: Z∈ M , a L×Q matrix, with s principal components;
TOL, a numerical threshold of tolerance;
 ITER, a maximum number of iterations.
i)   Z ← U, the center matrix as an initial value;
ii)  Z s ← lbfgs(Z, objective = Λ(Z,s), TOL, ITER);

iii) Compute the [ χ L
¿ ; χ L

¿ ] coordinates,

 applying (19) & (20) duality relationships;

iv) Return [ χ L
¿ ; χ L

¿ ].
Source: adapted from Garro and Rodriguez [24].
Nota bene: lbfgs is a function implementing BFGS algorithm, from the nloptr 
package by Ypma et al.[35].



2.4 Symbolic clustering analysis of the fertilizer cost distributions
The local dissimilarities between country l and country l’, associated with these
estimation intervals of technical coefficients for the qth conditional quantile, are
computed according to the Euclidean distance metric:

(23) δM ( z lq , zl'q)=√(Inf ¿
j0(q)−Inf ¿

j0(q))2+(¿¿
j0(q)−¿ γ̂ l'

j0(q))2
.

For this metric M, a global dissimilarity between country l and country l’ based
on the differences over the national distributions of estimation intervals for the
technical  coefficients  is  computed  according  to  the  following  quadratic
criterion:

(24) d (ωl ,ωl' )=(∑
q=1

Q

δM
2 (z lq , z l'q))

1 /2

. 

Given  a  matrix  of  dissimilarities  between national  empirical  distributions  of
fertilizer costs issued from the previous computations, we can use the methods
of unsupervised clustering. In a way similar to the Ward's method, Chavent  et
al. [6] proposes a divisive hierarchical clustering algorithm on symbolic data
(DIVCLUS-T), valid for both interval data and categorical data. Subsequently,
we  detail  for  interval  data  the  principles  on  which  the  operations  of  this
unsupervised clustering procedure are based.
The divisive hierarchical clustering algorithm recursively splits each cluster into
two sub-clusters, starting from the whole set of countries as symbolic objects 
Ω={ω1 ,⋯ ,ωl ,⋯ωL }.
At each partition in  k symbolic clusters  PK={C1,⋯ ,C k⋯ ,CK }, a cluster

has  to  be  divided  in  order  to  get  a  partition  PK+1,  with  K+1 clusters,
optimizing the selected adequacy criterion based on the inertia.

The  inertia  of  the  kth cluster  is  defined  by   I (C k )=∑
l∈ C k

μl dM
2 (zl , g (C k ))

where  μl is  the  weight  of  the  lth country  and  g(Cl ) is  the  cluster  centroid

defined as:

(25)
g(Ck )=

1

∑
l∈ Ck

μl
∑
l∈ Ck

μ l z l.

The intra inertia is defined by the sum of the inertias of the clusters to their
centroids:

(26) W (PK )= ∑
k=1 ,… , K

I (C k ).



The inter inertia is defined by the inertia of the centroids with regards to the g
overall centroid of Ω , as follows: 

(27) B(PK )= ∑
k=1, …, K

μk dM
2 (g(Ck ) , g) where μk= ∑

l=1 ,…, k

μl.

For a partition PK, the total inertia sums the intra inertia with the inter inertia:

(28) I (Ω )=W (PK )+B (PK ).
Hence,  minimizing  the  heterogeneity  (measured  by  W)  is  equivalent  to
maximizing the homogeneity (measured by B).
Generated by the logical binary choice (yes/no) to a numerical binary question

Ψ=[ Is zq≤c? ],  let us denote  {Ak , Ak } the induced bipartition of a cluster

C k formed  of  nk objects.  In  order  to  choose  among  the  nk−1 possible

bipartitions of the C k cluster, a discriminating  criterion can be  defined by the
following ratio:

(29)  D (Ψ )=
Bq (A k , Ak)
I j (C k )

=1−
W j (A k , A k)

I q (C k)
, 

where the inter inertia Bq(A k , A k)  and the inertia I q (C k ) are computed with

regards to the  q th conditional quantile. Hence, minimizing the intra inertia W

{Ak , Ak } is  equivalent to maximizing the inter  inertia  B{Ak , Ak } and, as  a

result, to the D (Ψ ) discriminating criterion.

As in Ward method, the “upper hierarchy” (Mirkin [27])  of  partition  PK is

indexed by the height h  of a cluster CK  , defined by its inter inertia as follows:

(30)  h (C k)=B (Ak , Ak )=
μ(Ak )μ (A k )
μ(A k )+μ(Ak )

d2(g (A k) , g(A k ))

The  DIVCLUS-T  algorithm  splits  the  cluster  CK
¿

 that  maximises  h (CK ),
ensuring  that  the   next  partition  PK+1=PK {AK , AK }−¿CK

¿ ¿ has  the

minimum intra inertia value, with respect to the rule

(31) W (PK +1 )=W (PK )−h (CK
¿ ).

In order to determine an optimal clustering, we use as the internal quality index
for each partition PK , the log of the determinant ratio computed as follows:

(32)  ϰK=N log( det (T )
det (WG(K )))

where T=Z' Z  is the total scatter matrix (N times the total variance-covariance

matrix)  and  WG(K )=∑
k=1

K

W (k ) the sum of the within-group scatter matrices,

W (k ) for each group C k of the partition PK in K groups.



The optimal score for the quality index is given by the min_diff decision rule:
K ¿=argminK {∂K−∂K−1}
with  ∂K=ϰK+1−ϰK,  using  procedure  ClusterCrit proposed  by  Desgraupes
[12] for needed computations.

3  Results 

Based on the gross product, the estimation according to the quantiles provides a
conditional  allocation  of  the  fertilizer  costs  by  main  products,  within  the
framework  of  a  multi-product  exploitation.  In  the  framework  of  the Farm
Accountancy Cost Estimation and Policy Analysis project (FACEPA) research
project, the managers in charge of the Knowledge Based Bio-Economy project
of the 7th EU Framework Program of Research has chosen to focus on the main
agricultural commodities produced at a level sufficiently broad at the European
level to allow meaningful cross-country comparisons for the twelve European
Member  States  which  are  the  main  producers  (EU12),  choosing  2006  as  a
baseline for comparison convenience.
We analyse the results obtained in particular for the yield crops about fertilizer
inputs.  The figures  are  estimated from a quantile  regression  of  the  fertilizer
inputs on a decomposition of  the gross  product  into five product  aggregates
(yearly crops, permanent crops, pasture livestock, off-ground livestock, others)
for the set of twelve European countries (UE12) selected on 2006.
Table 1 presents for yield crops the estimation intervals of conditional quantiles
(lower decile D1, lower quartile Q1, median Q2, upper quartile Q3, upper decile
D9) of the fertilizer inputs of agricultural production. 

Country D1 Q1 Q2 Q3 D9
BEL [0.018 : 0.034]  [0.026 : 0.042] [0.042 : 0.065]  [0.054 : 0.084][0.059 : 0.126]
DAN  [0.024 : 0.049] [0.049 : 0.049] [0.062 : 0.079]  [0.094 : 0.106][0.129 : 0.129]
DEU [0.028 : 0.044] [0.073 : 0.073]  [0.120 : 0.120]  [0.160 : 0.160][0.190 : 0.190]
ESP  [0.019 : 0.032]  [0.045 : 0.068] [0.075 : 0.110] [0.125 : 0.149] [0.140 : 0.226]
FRA [0.037 : 0.051] [0.075 : 0.091] [0.119 : 0.134] [0.159 : 0.181][0.191 : 0.214]
HUN  [0.041 : 0.060] [0.075 : 0.091]  [0.107 : 0.128] [0.152 : 0.183][0.207 : 0.207]
ITA [0.004 : 0.017] [0.019 : 0.040] [0.057 : 0.092]  [0.114 : 0.114][0.153 : 0.153]
NED  [0.000 : 0.009]  [0.009 : 0.020] [0.019 : 0.026]  [0.026 : 0.040][0.026 : 0.055]
OST [0.002 : 0.043] [0.044 : 0.058] [0.061 : 0.087] [0.085 : 0.128][0.108 : 0.155]
POL  [0.047 : 0.053] [0.072 : 0.083] [0.120 : 0.136] [0.188 : 0.206][0.251 : 0.277]
SVE [0.010 : 0.053] [0.018 : 0.124]  [0.114 : 0.197] [0.152 : 0.256][0.212 : 0.252]
UKI [0.042 : 0.068] [0.068 : 0.086] [0.112 : 0.121] [0.117 : 0.139] [0.146: 0.163]
Tab. 1. Yield Crops, estimation intervals for technical coefficients of quantile fertilizer costs for 

€ 1 of gross product, EU12. Source: author’s processing, from EU-FADN 2006.

The pre-visualization of the fertilizer  cost estimates is  done according to the
graph in Fig. 2, showing the conditional quantile point estimates in ascending



order for each country. This graph of point estimates of conditional quantiles of
fertilizer  costs for yield crop by country highlights some distributional  facts.
Below 3%, the overall  level of the Netherlands distribution curbs (iNED and
sNED on Figure 1) is the lowest of the twelve European countries studied, with
the exception of the lower bound (i) of the first decile (D1) in Sweden (SVE)
which is negative.  The Netherlands distribution is also the flattest of the twelve
European  distributions  analysed, followed  by  the  distributions  for  Italy  and
Belgium, which have fairly moderate slopes and overall estimation levels below
13%. The Netherlands distribution illustrates the location shift  linear model of
conditional quantile with homogeneous slopes.
Conversely,  the  maximum and  minimum curves  of  the  Swedish  distribution
(iSVE and  sSVE)  are  the  steepest  (from  1,6%  to  near  30%),  immediately
followed by those of France (iFRA and  sFRA) and Poland (iPOL and  sPOL).
These  three  countries  illustrate  the  location-scale  shift  linear  model of
conditional quantile with heterogeneous slopes.
Next, Hungary (iHUN and sHUN), Germany (iDEU and sDEU), Austria (iOST
and sOST), the United Kingdom (iUKI and  sUKI) and Spain (iESP and  sESP)
form an intermediate group where, on the basis of this first graph, it becomes
difficult to distinguish clear differences between these national distributions.
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Fig. 2. Yield Crops, interval estimation for fertilizer coefficients of conditional quantiles for 12 EU
member States; iOST stands for Austria infimum, respectively, sOST for Austria supremum.
Source: author’s processing, from EU-FADN 2006.



3.1 The interval PCAs of fertilizer cost estimates
Applying equations (9) and (10), the “centers” option of the interval PCA shows
a correlation circle displaying the estimate quantile coordinates on the first two
principal components with the highest negatives correlation for D1, Q1 and Q2
quantiles.  The  larger  fans  which  indicate  the  greater  infimum-supremum
intervals of estimation are found for D1 and Q1 quantiles meanwhile Q2, Q3
and D9 quantiles displays the smallest which indicate the lower interval ranges
of estimates.
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Fig. 3. Symbolic PCA (‘centers’ option) for Quantile Estimates, factorial plane F1xF2 of EU12 
countries. Source: author’s processing, from EU-FADN 2006.
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Fig. 4. Symbolic PCA (‘centers’ option) for Quantile Estimates, factorial plane C1xC2 of EU12 
countries. Source: author’s processing, from EU-FADN 2006.



In the factorial plane of the first two components C1xC2 (fig.4), the Netherlands
are plotted with Belgium (BEL), Italy (ITA) and Denmark (DAN) along the
positive semi-axis of the first  component  (C1>0),  indicating a lower general
level of fertilizer estimates. In the opposed half-plan (C1<0), are plotted France
(FRA), Germany (DEU) Hungary (HUN), Poland and United Kingdom (UKI)
indicating much higher general levels of fertilizer estimates. In the median range
of the first  component,  are located Austria  (OST),  Spain (ESP) and Sweden
(SVE), indicating a rather median range in fertilizer use. 
Along the C2 component, Italy with relatively low estimates for higher quantiles
(Q3 and D9) is clearly opposed to Sweden and United Kingdom, with highest
estimates for Q3 and D9 
Countries  symbolised  by  a  larger  rectangle  surface  are  Austria,  Belgium,
Hungary, Spain, Sweden, and United-Kingdom which correspond to those with
greater interval ranges. Conversely, countries symbolised by a smaller rectangle
surface are Denmark, Germany, France, Italy, Netherlands, and Poland which
are characterised by a narrower range of estimate intervals.
For individuals, alternate projections provided by the “best point” PCA options
are  the  optimised  distance  option  on  one  hand,  and  on  the  other  hand  the
optimized variance option: compared to the Centers option, the surface median
of  the  Optimised  distance  option  is  lower,  while  the  one  of  the  Optimised
variance is greater.
As shown in table 2, the optimised variance option of the PCA maximizes the
variance of the first components since the cumulative percentage of variance of
the first factorial plan is the highest (98.0%) compared to the optimal distance
option (94.1 %) and to the classical PCA (97.8%). So, the optimised variance
option tends to provide a more complete summary in two dimensions.

%_cum_var Classic Optdist Optvar
C1 88.05 80.40 85.37
C2 97.76 94.06 97.99
C3 99.32 99.37 100.00
C4 99.96 99.84 100.00
C5 100.00 100.00 100.00

Tab. 2. Comparison of the percentage of cumulative variance between the principal components of 
the three following PCA options: classical PCA (Classic), optimised distance (Optdist), and 
optimised variance (Optvar). Source: author’s processing, from EU-FADN 2006.

The  Optimised  distance  option  of  the  interval  PCA  displays  the  minimum
absolute deviations (MAD) between supremum and infimum vertices over the
principal  components,  compared  to  the  centers  option  which  provides  the
greatest MADs and the optimised variance option (cf. table 3) with intermediate
MAD  ranges. So the Optimised distance option provides a narrower display of
interval estimates for quantile.



Method MAD_C1 MAD_C2 MAD_C3 MAD_C4 MAD_C5

Centers 1,72 1,78 1,42 1,62 1,17
Optdist 1,13 1,00 0,94 0,97 0,85
Optvar 1,62 1,65 1,64 1,10 1,25

Tab. 3. Comparison of the mean absolute deviation (MAD) between the principal components of 
three PCA options:  centers PCA (Centers), optimised distance (Optdist), and optimised variance 
(Optvar). Source: author’s processing, from EU-FADN 2006.

In the first factorial  plane, the optimised distance and the optimised variance
options  display  a  pattern  of  correlations  between  quantile  estimates  and
principal components very similar to those of the classic PCA on the two first
principal components. As shown by their contributions to inertia (table 4), the
first  two principal  components  have roughly the same definition in terms of
quantile.  The correlations between quantile  estimates  and the other  principal
components (C3, C4 and C5) are somewhat different between the three options
displayed in table 4 (classical PCA, optimised distance and optimised variance
options), however without few practical implications due to the very small level
of inertia (below 5%) expressed by this these components.

C1 C2 C3 C4 C5
Contr. (%) Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar
D1 16 10 17 55 84 37 10 3 43 17 2 2 2 0 1
Q1 21 23 19 10 0 25 8 28 41 59 32 3 2 18 12
Q2 21 24 23 4 2 3 41 14 4 24 3 3 9 58 66
Q3 21 23 21 15 9 14 0 1 1 0 45 60 64 23 4
D9 20 20 20 16 5 21 41 55 10 0 18 32 23 2 17

Tab. 4. Comparison of the relative contribution to inertia (Contr.) between the principal components
of the three PCA options:  classic PCA (Classic), optimised distance (Optdist), and optimised 
variance (Optvar). Source: author’s processing, from EU-FADN 2006.

The contributions to inertia for the national distributions of fertilizer estimates
(table  5)  show  similar  patterns  on  the  two  first  components  between  the
optimised options and the classic PCA, with the exception of Poland opposed to
Sweden in the  optimised variance  option,  instead  of  Hungary  in  classic  and
optimised distance options for the C2 component.

C1 C2 C3 C4 C5
Contr. (%) Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar

Bel 11 13 13 5 2 8 2 3 6 11 3 26 2 0 0
Dan 2 3 1 4 0 4 3 0 7 0 7 7 5 18 26
Deu 3 2 4 0 1 0 6 0 15 4 7 4 0 6 7
Esp  0 0 0 4 3 1 2 28 1 9 33 4 36 4 7
Fra   7 6 6 1 2 1 4 0 2 11 0 0 0 3 32
Hun  7 7 9 6 7 3 2 0 5 6 4 9 15 33 3
Ita  6 5 4 23 8 21 3 12 4 6 26 15 6 4 6
Ned  38 27 36 0 0 2 2 5 0 1 2 15 5 1 3
Ost   3 6 4 0 4 0 1 3 19 18 12 4 0 3 3
Pol  13 11 17 1 0 0 45 18 27 2 1 16 1 0 8
Sve   9 20 1 24 40 44 23 23 1 14 0 1 9 1 5
Uki  2 2 5 32 32 17 7 8 12 18 5 0 20 29 0

Tab. 5. Comparison of the relative contribution to inertia (Contr.) between the principal components



of the three PCA options:  classic PCA (Classic), optimised distance (Optdist), and optimised 
variance (Optvar). Source: author’s processing, from EU-FADN 2006.

As summarized by the mean absolute deviation in table 3,  the display of all
country rectangle projections is the largest into the centers option (figure 4) and
the smallest into the optimised distance option (figure 6) while the display of the
optimised  variance  option  (figure  5)  is  of  medium  range  between  the  two
previous  options,  both  in  the  lengths  (dimension  1  of  the  first  principal
component) and the widths (dimension 2 of the second principal component).
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Fig. 5. Symbolic PCA (‘optimized.distance’ option) for Quantile Estimates, factorial plane F1xF2 of
EU12 countries. Source: author’s processing, from EU-FADN 2006.
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By the relative sizes and locations of their hyper-rectangle projections,  these
three  factorial  representations  (figures  4,  5,  and  6)  distinguish  clearly
Netherlands on the first principal component, as the archetype of the  location
shift model, and Sweden, on the second principal component, as the archetype
of the location scale shift model.

3.2 The divisive hierarchy of fertilizer cost estimates
The divisive hierarchy obtained with Euclidean distance option shows that the
set of D1, Q1, Q2 and Q3 quantile estimates is used by the discriminant values,
which  implies  keeping  these  parameters  to  describe  the  distribution,  and
possibly extending it  by a finer quantile scale allowing some of the national
distributions to be better distinguished.
The first  partition in two clusters  corresponds  to  the supremum level  of  the
median estimate (Q2S).
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Fig. 7. Symbolic Divisive Clustering (‘Euclidean  distance’ option) for Quantile Estimates, EU12
countries. Source: author’s processing, from EU-FADN 2006.



Fig. 8. Symbolic  Divisive Clustering (C4 optimal partition for Determinant Ratio Criterion) for
Quantile Estimates, factorial plane F1xF2 of EU12 countries. Source: author’s processing, from EU-
FADN 2006.

At the top of the divisive hierarchy, the clustering procedure allows to identify
two  contrasted  models  for  empirical  distributions  of  the  fertilizers  technical
coefficients for yearly crops production costs used to € 1,000 of gross product.
As the first cluster, Netherlands (Ned) and the group of Italy (Ita),  Belgium,
(Bel),  Denmark  (Dan)  and  Spain  (Esp)  grouped  by  their  supremum median
(Q2S) levels which are lower than € 7, are split in the following divisive step by
the supremum higher quartile (Q3S) level of  € 5 which identifies Netherlands as
the less intensive in fertilizer input. Netherlands is the archetype of the location-
shift model  formalizing  the  assumption  of  homogeneous  producers  in  their
fertilizer costs. 
As the second cluster, for which their supremum median (Q2S) of fertilizer cost
is  greater  than  7  €,  is  split  into  two  groups:  first,  the  group  for  which  the
fertilizer first decile input is greater than € 1, i.e. the subgroup formed by Poland
(Pol),  and Hungary (Hun) aggregated  with France (Fra);  second,   the group
formed by Sweden (Sve)  aggregated  with the subgroup formed by Germany
(Deu), Austria (Ost) and United-Kingdom (Uki), on the basis of their fertilizer
first decile lesser than € 1  input level. This latter group illustrates the location-
scale shift model,  formalizing the assumption of  heterogeneous  producers  in
their fertilizer costs.
The partition into four groups displays by figure 8 is the optimal partition for the
minimum difference  in  the  logarithm of  the  ratio  of  determinants  (package
ClusterCrit), which is a consistent rule with the criterion of the DIVCLUS-T
algorithm.

Conclusions

Based on quantile regression and symbolic data analysis, this paper presents a
global  methodology  which  aims  to  keep  as  much  as  possible  relevant



information  for  the  policy  design,  all  along  the  econometric  process  of
estimating and analyzing agricultural fertilizer costs for yearly crops production,
conditioned  by  wheat  yield  as  a  soil  carbon  deficit  proxy.  The  different
properties  of  three  options of  interval  PCA (centers,  optimized  distance  and
optimized  variance)  are  described  allowing  to  identify  different  models  of
distributional scale, notably that of the location shift model opposite that of the
location-scale shift one. Differences and similarities between interval estimates
are  exploited  using  divisive  hierarchical  clustering  to  produce  two  country
clusters  identifying  through  quantile  cost  thresholds  the  archetypes  of  the
location shift model and the  location-scale shift one. The differences between
four  groups  of  countries  are  delimited  by  optimal  thresholds  expressed
according  to  the  conditional  quantiles  in  unitary terms  of  the gross  product.
These thresholds can be used for segmenting farm populations to later analyze
the  differential  impacts  of  agricultural  policy  measures.  We  will  apply  this
methodology at the second level of the European Nomenclature of Territorial
Units for Statistics (NUTS 2, 281 regions) in order to investigate the relative
losses of soil nutrients along the different periods of CAP.
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