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Abstract

In this paper, we analyse the second best Payment for Environmental Services (PES)
design when it interacts with a Pigouvian tax under imperfect competition. We consider
farmers who face a choice between producing a conventional or an organic agriculture
good. The regulator sets a Pigouvian tax on conventional agriculture as it generates
environmental damages, as well as a PES on uncultivated land as buffer strips favor
biodiversity. The conventional agriculture sector is perfectly competitive whereas the
organic good sector is an oligopoly. We show that the second best level of the Pigouvian
tax is higher than the marginal damage whereas the PES is lower than the marginal
benefit. We then introduce the marginal social cost of public funds (MCF) and show
that the Pigouvian tax increases with the MCF while the PES decreases with the MCF
provided that demand for the conventional agriculture good is inelastic.
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1 Introduction

Environmental services (ES) are the benefits we obtain from nature, and they are generally
categorized into the following four types: “provisioning services such as food, water, timber,
and fiber; regulating services that affect climate, floods, disease, wastes, and water quality;
cultural services that provide recreational, aesthetic, and spiritual benefits; and supporting
services such as soil formation, photosynthesis, and nutrient cycling” (Reid et al., 2005).
Many of these services have been in decline or are currently less than optimally provided.
Although provisioning services are generally included in markets, the other three types of ES
are positive externalities that are not accounted for in markets, which leaves room for policy
intervention to encourage their optimal provision.

Payments for Environmental Services (PES) is one policy tool that has been implemented
to try to increase the provision of environmental services. One of the most widely cited
definitions of PES comes from Wunder (2005), who defines PES as a “voluntary transaction
where a well-defined ES or a land-use that is likely to produce that service is ‘bought’ by a
(minimum one) ES buyer from a (minimum one) ES provider if and only if the ES provider
secures ES provision (conditionality).” Conditionality can be difficult to evaluate in results-
based PES schemes, as some ES are difficult to measure. In practice, it is much more common
to see PES schemes conditional on land use or specific management practices.

The above definition exemplifies the Coase theorem (Coase, 1960), which states that an
externalitiy can be resolved through private negotiation, and the socially optimal allocation of
ES can be achieved, regardless of the initial property allocation and assuming sufficiently low
transaction costs. One example of a Coasean PES is the Vittel PES in north-eastern France,
where Nestle reached an agreement with local farmers to prevent nitrate contamination in
aquifers (Sattler & Matzdorf, 2013).

The definition of PES can be widened to include certain types of government interven-
tion that reflect a Pigouvian subsidy (Sattler & Matzdorf, 2013; Pigou, 1920). This type
of PES is far more common in practice than a Coasean PES. For example, the European
agri-environmental programs are financed through public funds, and the government acts as
an intermediary between ES buyers (the public) and ES sellers (farmers who receive PES
subsidies) (Sattler & Matzdorf, 2013). Both the Coasean and Pigouvian PES schemes follow
the beneficiary pays principle rather than the polluter pays principle.

Muradian et al. (2010) provide yet another alternative definition, describing PES as “a
transfer of resources between social actors, which aims to create incentives to align individual
and/or collective land use decisions with the social interest in the management of natural
resources.” This definition is more flexible than that of Wunder (2005), and better reflects
what occurs in actual PES schemes rather than what should occur in theory. This definition
also reflects that payments may not necessarily be monetary, but they may be in-kind transfers
as well.

There have been a variety of PES schemes, and classifying them is not a straightforward
task. As Sattler et al. (2013) point out, “PES schemes draw on a multitude of approaches that
highly differ in terms of addressed ES, mechanisms for price formation, payment origins and
levels, buyer and seller characteristics, rules governing the contract among involved parties,
level of complexity and so forth.” One example of different approaches is that payments
can be increasing, decreasing, or stable over time, though this is outside of the scope of this
paper. According to Wunder (2005), the main ES involved in PES are carbon sequestration
and storage, biodiversity protection, watershed protection, and landscape beauty.
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Biodiversity protection in particular has been getting more attention in recent years as we
learn more about the extent of the decline of global biodiversity and its consequences. It has
been shown that land use change is the leading driver of biodiversity loss in terrestrial ecosys-
tems and voluntary incentives are the most common mechanism to encourage conservation
on privately owned land (Lewis et al., 2011).

Agricultural lands are often home to a significant share of biodiversity, but over the
past several decades, as a result of farm intensification and increase in farm size, “natural
habitats have been transformed and fragmented, leading to many species’ decline” (Bamière
et al., 2013). Accordingly, one of the more common forms of PES targeting biodiversity
conservation are Agro-Environmental Schemes (AES), which are incentive-based instruments
that provide payments to farmers for voluntary actions taken to preserve and enhance the
environment (Uthes & Matzdorf, 2013). In fact, “in the EU, the largest source of funding for
practical nature conservation is delivered through agri-environment-climate schemes (AES)
implemented under the Common Agricultural Policy (CAP)” (Herzon et al., 2018). Common
management practices adopted under AESs include reducing fertilizer and/or pesticide use,
planting buffer crops near rivers, and adaptations to crop rotations. More recently, following
France’s National Biodiversity Plan of 2018, French water agencies are experimenting with
their own PES schemes that are separate from the AES under the CAP. They have been
allocated 150 million euros of the French national budget, which they will mobilize by 2021,
with the objective to maintain or create good ecological practices, such as lowering pesticide
use, planting cover crops, etc. While both maintaining and creating good practices will
be remunerated, creating good practices will receive much higher compensation (up to 676
euros/ha/year compared to up to 66 euros/ha/year for maintenance.

Agricultural lands are also sometimes associated with pollution; for example, the use of
chemical fertilizers and pesticides that pollute watersheds. The standard economic solution to
pollution is a Pigouvian tax, which addresses the negative externality of pollution by charging
polluters the price of the damage caused by the pollution. In a perfectly competitive market
setting, placing a tax on pollution equal to its marginal damage internalizes the damage into
the production decision, and the polluter will reduce pollution to the socially optimal level.
Alternatively, a subsidy can be implemented to incentivize farmers to use less fertilizers and
pesticides, which is essentially a PES.

However, in situations with imperfect competition, “a tax based only on marginal ex-
ternal damages ignores the social cost of further output contraction by a producer whose
output already is below an optimal level” (Barnett, 1980). Indeed, Buchanan (1969) showed
graphically that a Pigouvian tax that works under perfect competition could lead to a welfare
loss under a monopoly. After Buchanan, Barnett (1980) demonstrated mathematically that,
under a monopoly, the optimal second best tax should actually be less than the marginal
damage and that the price elasticity of demand affects the optimal tax rate. Ebert (1991)
follows Barnett (1980) in analyzing Pigouvian taxes under imperfect competition, but focus-
ing on the case of an oligopoly rather than a monopoly. Ebert finds once again that the
optimal Pigouvian tax rate will depend on the marginal damage as well as the market struc-
ture. Since then, the literature on taxation has widely developed for numerous scenarios of
imperfect competition.

Most PES policy evaluations focus on a single policy’s impact, but in reality there may
be multiple policies interacting to provide the outcomes we observe. Lankoski & Ollikainen
(2003) is one paper that looks at both a tax and a subsidy in an agricultural setting. They use
a production function approach and augment Lichtenberg’s model of agricultural production
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(Lichtenberg, 1989) to study the optimal land allocation between two crops and fallow buffer
strips when facing negative externalities from nutrient runoff, and positive externalities from
biodiversity and landscape diversity. Their model involves land parcels of varying land quality
(though with uniform quality within a given parcel) adjacent to a water body such as a
stream or river. Their socially optimal policy involves a differentiated tax on fertilizer and a
differentiated buffer strip subsidy.

The aim of our paper differs from Lankoski & Ollikainen (2003), which considers a per-
fectly competitive world. In this article, we assume a farmer chooses to produce a conventional
or an organic good. Whereas the conventional agriculture good market is perfectly competi-
tive, the organic good market is organized under an oligopoly. Farmers can leave uncultivated
land as buffer strips which favor biodiversity whereas conventional agriculture creates envi-
ronmental damages. In order to favor biodiversity and reduce environmental damages, the
regulator sets a PES and a Pigouvian tax. If the farmer chooses to leave buffer strips, the
Pigouvian tax decreases the conventional good production level and the PES reduces both
production levels (organic and conventional). We show that the second best level of the
Pigouvian tax is higher than the marginal damage and the PES is lower than the marginal
benefit. The organic good production level is too low because of the market power, and the
PES further reduces this production level. In order to mitigate the reduction due to market
power, the regulator sets a PES lower than the marginal benefit. The conventional good
level is reduced with both the PES and the Pigouvian tax. As the PES is not high enough,
the regulator sets a Pigouvian tax above the marginal damage in order to reach the correct
level of conventional agriculture. If productions are profitable enough, farmers never choose
buffer strips and the PES is useless. In this case the regulator can only regulate environmen-
tal damages. This time, market power in organic agriculture favors conventional agriculture
production. So a way to reduce environmental damages is to set the Pigouvian tax above the
marginal damage. We then introduce a marginal social cost of public funds (MCF) and find
that the tax will increase with the MCF, whereas the PES will decrease with the MCF.

This paper is organized as follows: Section 2 sets forth the assumptions used in our
model; Section 3 presents the farmer’s production decision absent of any policy; Section 4
examines second best policies, looking at the farmer’s behavior, the optimal tax and PES,
and the marginal cost of public funds. Finally, Section 5 concludes and presents policy
recommendations.

2 Assumptions

We consider n ≥ 2 farmers who each have three choices for how to manage his land: conven-
tional agriculture (x1i), organic agriculture (x2i), and/or leaving the land uncultivated to act
as a reserve for biodiversity (yi). The farmers compete in a Cournot model of oligopoly for
organic agriculture, with the assumption that all farmers are identical. Each farmer i pro-
duces x1i, x2i and yi, with total output for each good equal to X1 =

∑n
i=1 x1i, X2 =

∑n
i=1 x2i,

and Y =
∑n

i=1 yi, respectively. Each farmer decides how much of his land to allocate to each
management option such that x1i+x2i+yi = Ti where Ti is his total area of land. We assume
that producing x1i (x2i) units requires x1i (x2i) units of land ∀i = 1, ..., n .

The cost of implementing organic agriculture is higher than that of conventional agri-
culture, c1(x1i) < c2(x2i). Both c1(x1i) and c2(x2i) are increasing and convex, ∀i = 1, ..., n.
Additionally, we assume that c′′′1 (x1i) = 0 and c′′′2 (x2i) = 0,∀i = 1, ..., n. The quantity of
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land left uncultivated only incurs an opportunity cost of not producing. Finally, the inverse
demand function for each agricultural product is given by p1(X1) and p2(X2) for conventional
and organic agriculture, respectively. Demand is linear for both agricultural goods.

Each of the land management choices also has a different impact on the environment.
Conventional agriculture causes pollution, represented by the damage function D(X1) which
is increasing and convex, D′(X1) > 0, D′′(X1) > 0. We assume that organic agriculture does
not lead to pollution, but also does not increase biodiversity, thus it has a neutral impact
on the environment. Finally, the uncultivated land leads to biodiversity benefits, and has a
positive impact on the environment, represented by the increasing function B(Y ), which is
given by B(T −X1 −X2).

We consider that the conventional agriculture good experiences perfect competition whereas
the organic agriculture good experiences imperfect competition in the form of oligopoly.

3 No regulation

In this section we look at the farmer’s decision in the absence of any policy. Farmer i
maximizes his profit by choosing x1i and x2i, assuming x1j and x2j are given.

The profit for farmer i; ∀i = 1, 2, ..., n; i 6= j is

πi(x1i, x2i) = p1x1i + p2
(
X2

)
x2i − c1(x1i)− c2(x2i) + λ(Ti − x1i − x2i)

Maximizing profit yields the following conditions:

p1 − c′1(x1i)− λ = 0 (1)

p′2
(
X2

)
x2i + p2

(
X2

)
− c′2(x2i)− λ = 0 (2)

λ(Ti − x1i − x2i) = 0 (3)

Whereas a farmer will consider the marginal cost when making his conventional agri-
culture production decision, he will consider the marginal revenue rather than the marginal
cost when making his organic agriculture production decision. Additionally, farmer i must
consider all other farmers’ decisions in order to maximize his profit. The production decision
also depends on whether the land constrains the farmer’s decision, that is λ > 0, or whether
the farmer will have some uncultivated land, that is λ = 0.

To see how x2i responds to the choices of farmer j, we apply the implicit function theorem.
We start with the case where λ = 0, and use F (x2i, x2j) = p′2

(
X2

)
x2i + p2

(
X2

)
− c′2(x2i).

∂x2i
∂x2j

= −
∂F
∂x2j
∂F
∂x2i

= − p′′2(X2)x2i + p′2(X2)

p′′2(X2)x2i + 2p′2(X2)− c′′2(x2i)
< 0 (4)

An increase in farmer j’s production of the organic agriculture good will make farmer i
reduce his production of the organic agriculture good. Thus, the production of the organic
agriculture good is a strategic substitute.

For the case where λ > 0, we apply the implict function theorem, using x1i = Ti − x2i
and G = p1 − c′1(Ti − x2i)− p′2(X2)x2i − p2(X2) + c′2(x2i)
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∂x2i
∂x2j

= −
∂G
∂x2j
∂G
∂x2i

= − −p′′2(X2)(n− 1)x2i − p′2(X2)(n− 1)

c′′1(Ti − x2i)− p′′2(X2)x2i − 2p′2(X2) + c′′2(x2i)
< 0 (5)

This shows that an increase in farmer j’s production of the organic agriculture good will
lead to a decrease in farmer i’s production of the organic agriculture good, as it is once again
in this case, a strategic substitute.

4 Second best policies

Although we cannot directly correct for the oligopoly, we can examine a second best policy to
correct for the negative and positive externalities of pollution and biodiversity, respectively,
and improve welfare. Here, we examine a tax, t, on pollution related to the conventional
agriculture good and a PES for biodiversity, s, which subsidizes uncultivated land in order
to favor biodiversity.1

4.1 The farmer’s behavior

When the tax and subsidy are implemented, the profit for farmer i;∀i = 1, 2, ..., n; i 6= j is

πi = p1x1i + p2
(
X2

)
x2i − c1(x1i)− c2(x2i)− tx1i + s(Ti − x1i − x2i) + λ(Ti − x1i − x2i)

Maximizing profit yields the following conditions:

p1 − c′1(x1i)− t− s− λ = 0 (6)

p′2
(
X2

)X2

n
+ p2

(
X2

)
− c′2(x2i)− s− λ = 0 (7)

λ(Ti − x1i − x2i) = 0 (8)

Starting with the unbounded case (λ = 0), we can see how x1i and x2i change with
changes in the values of s and t by applying the implicit function theorem on (6) and (7),
using F (x1i, s, t) = p1 − c′1(x1i)− t− s and F (x2i, s) = p′2

(
X2

)
x2i + p2

(
X2

)
− c′2(x2i)− s

∂x1i
∂s

= −
∂F
∂s
∂F
∂x1i

=
1

p′1 − c′′1(x1i)
< 0

∂x1i
∂t

= −
∂F
∂t
∂F
∂x1i

=
1

p′1 − c′′1(x1i)
< 0

dx2i
ds

= −
∂F
∂s
∂F
∂x2i

=
1

2p′2(X2) + p′′2(X2)x2i − c′′2(x2i)
< 0

1We also analysed a scenario with two PES: one for biodiversity and one for organic agriculture, which
replaces the tax. We find in this case that the PES for organic agriculture takes the market power into account
and the result is a subsidy equal to the marginal benefit of organic agriculture.
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An increase in subsidy level will lead to a decrease in both agriculture goods, and thus
an increase in uncultivated land and biodiversity benefits. Additionally, an increase in the
tax t will also lead to a decrease in the conventional agriculture good.

For the bounded case(λ > 0), we set x2i = Ti − x1i and we apply the implicit function
theorem using G(x1i, t) = p1− c′1(x1i)− t− p′2(T −X1)(Ti− x1i)− p2(T −X1) + c′2(Ti− x1i).

∂x1i
∂t

= −
∂G
∂t
∂G
∂x1i

=
1

c′′1(x1i) + c′′2(Ti − x1i)− 2p′2(T −X1)− p′′2(T −X1)(Ti − x1i)− p′1
> 0

Since x2i = Ti − x1i(t),
∂x1i
∂t

=
−dx2i
dt

< 0

This implies that an increase in tax t will lead to an increase in production of the organic
agriculture good, and a decrease in production of the conventional agriculture good. Here,
when λ > 0, the subsidy does not impact the farmer’s production choices because the cost
structure and market is such that it is not profitable to leave any land uncultivated.

4.2 Optimal tax and PES levels

We maximize the social welfare function to find the second-best levels of t and s for both the
bounded and the unbounded scenarios. Starting with the unbounded scenario (λ = 0), the
social welfare function is

W (X1(s, t), X2(s))
s,t

=

∫ X1(s,t)

0
p1(u)du+

∫ X2(s)

0
p2(v)dv − nc1

(
X1(s, t)

n

)
− nc2

(
X2(s)

n

)
+B(T −X1(s, t)−X2(s))−D(X1(s, t))

(9)

Maximizing this welfare function with respect to s and t leads to the following first order
conditions:

∂X1

∂s
[p1(X1(s))− c′1

(
X1(s)

n

)
−By −D′(X1(s))]

+
dX2

ds
[p2(X2(s))− c′2

(
X2(s)

n

)
−By] = 0

(10)

∂X1

∂t
[p1(X1(t))− c′1

(
X1(t)

n

)
−By −D′(X1(t))] = 0 (11)

with ∂X1
∂s < 0, ∂X1

∂t < 0, and dX2
ds < 0, and By = B′(y).

We can rearrange the profit maximization conditions, equations (6) and (7) to obtain the
following:

p1 − c′1
(X1

n

)
= t+ s (12)

p2(X2)− c′2
(X2

n

)
= −p′2(X2)

X2

n
+ s (13)
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Next, we can plug equations (12) and (13) into equations (10) and (11) to obtain the
following equations:

∂X1

∂s
[t+ s−By −D′(X1(s))] +

dX2

ds
[−p′2(X2(s))

X2

n
+ s−By] = 0 (14)

∂X1

∂t
[t+ s−By −D′(X1(t))] = 0 (15)

We can now solve (15) for t, and plug that into (14) to solve for s and t. We find:

s = By + p′2(X2)
X2

n
(16)

t = D′(X1)− p′2(X2)
X2

n
(17)

We find that the second best subsidy is equal to the marginal benefit plus the marginal
revenue, and since the marginal revenue is negative, the second best subsidy will have a value
lower than the marginal benefit. Similarly, the second best tax will be equal to the marginal
damage minus the marginal revenue, and thus will be higher than just the marginal damage
alone. Production of the organic agriculture good is lower than optimal because of the market
power involved. So, the tax becomes higher than the marginal damage and the subsidy lower
than the marginal benefit in order to not further distort the level of organic agriculture that
is produced.

As n increases and approaches infinity we approach the situation of perfect competition,
since X2

n tends to zero as n tends to infinity. This then nullifies the additional component
in the tax and the subsidy such that they are once again equal to the marginal damage and
marginal benefit, respectively.

Next, we look at the bounded case (λ > 0), using X1 = T −X2 to account for the value
of λ. The social welfare equation here is

W (X1(t), X2(t))
t

=

∫ T−X2(t)

0
p1(u)du+

∫ X2(t)

0
p2(v)dv − nc1

(
T −X2(t)

n

)
− nc2

(
X2(t)

n

)
+B

(
T − (T −X2(t))−X2(t)

)
−D(T −X2(t))

(18)

Maximizing this welfare equation yields the following first order condition:

dX2

dt
[−p1(T −X2) + p2(X2) + c′1

(
T −X2

n

)
− c′2

(
X2

n

)
+D′(T −X2)] = 0 (19)

Using the profit first order conditions (6) and (7), we find that

−p1 + c′1

(
T −X2

n

)
+ p2(X2)− c′2

(
X2

n

)
= −t− p′2(X2)

X2

n
(20)

Plugging (20) into (19) yields

t = D′(T −X2)− p′2(X2)
X2

n
(21)
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Similar to the unbounded case, the welfare-maximizing tax is equal to the marginal dam-
age minus the marginal revenue. Since the marginal revenue is negative, the resulting tax is
greater than the marginal damage. Depending on the value of λ, either a tax alone (when
λ > 0), or a tax and a subsidy (when λ = 0) results in implementing the second best.

4.3 Marginal cost of public funds

The marginal cost of public funds (MCF) is a measure of the welfare loss to society as a
result of raising additional revenues to finance government spending (Browning, 1976; Dahlby,
2008). Increasing taxes or implementing a new subsidy can change the allocation of resources
in an economy through impacts on consumption, labor, and investment decisions (Dahlby,
2008). Browning (1976) estimates the MCF of labor income taxes in the United States,
finding a MCF of $1.09-$1.16 per dollar tax revenue raised.

Laffont & Tirole (1986) and Caillaud et al. (1988) incorporate the social cost of public
funds into their models investigating regulation in asymmetric information scenarios. More
recently, Mougeot & Schwartz (2008) incorporate the MCF in their study of the optimal
allocation of pollution quotas in an asymmetric information scenario. In their model, the
regulator determines the pollution permit allocation, while taking into account a revenue
target since each euro collected by the sale of permits results in 1 + λ euros in social benefit,
where λ represents the MCF.

Brendemoen & Vennemo (1996) look at how the MCF changes in the presence of environ-
mental externalities, and find that accounting for environmental externalities can alter the
MCF of different taxes, and thus alter the ranking of efficiency of these taxes. If the MCF
for an environmental taxes are in fact lower than the MCF of another tax, lowering the other
tax will improve welfare (Brendemoen & Vennemo, 1996).

This improvement in welfare relates to the concept of the “double dividend” which sup-
poses that levying a revenue-neutral Pigouvian tax can reduce market distortions in two
ways: internalizing a negative externality, and reducing distortionary taxes while maintain-
ing the same governmental revenue level. Essentially, this idea supposes that the MCFs
for environmental taxes are lower than the MCFs for other sources of tax revenue (Dahlby,
2008). Several papers investigate the theoretical and empirical merit of the idea of the dou-
ble dividend under different conditions, such as different labor supply curves (Goulder, 1995;
Bovenberg, 1999; Carraro et al., 1996; Ploeg & Bovenberg, 1994; Ligthart & Van Der Ploeg,
1999). Finally, Chiroleu-Assouline (2001) provides a literature review of the different studies
of the double dividend.

Below, we incorporate the MCF in both the tax on conventional agriculture and the PES
for biodiversity. Using ε to represent the MCF, each euro in tax revenue will have 1 + ε
euros in social benefit, as the tax increases revenue and can replace other distortionary taxes.
Conversely, the PES is funded by the government, and implementing a new subsidy means
a requirement for additional government revenue through increased taxes, which will come
at a cost to society. So, each euro allocated to the PES comes at a cost of (1 + ε) euros to
society since it induces new distortionary taxes.

The welfare equation when λ = 0 and y > 0 now includes the terms εtX1 and εs(T −
X1 −X2) to reflect the MCF:
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W (X1(s, t), X2(s))
s,t

=

∫ X1(s,t)

0
p1(u)du+

∫ X2(s)

0
p2(v)dv − nc1

(
X1(s, t)

n

)
− nc2

(
X2(s)

n

)
+B(T −X1(s, t)−X2(s))−D(X1(s, t))

+ εtX1(s, t)− εs(T −X1(s, t)−X2(s))

(22)

Maximizing this welfare function with respect to s and t leads to the following first order
conditions:

∂X1

∂s
[p1(X1(s))− c′1

(
X1(s)

n

)
−By −D′(X1(s)) + εt+ εs]

+
dX2

ds
[p2(X2(s))− c′2

(
X2(s)

n

)
−By + εs]− ε(T −X1(s)−X2(s)) = 0

(23)

∂X1

∂t
[p1(X1(t))− c′1

(
X1(t)

n

)
−By −D′(X1(t)) + εt+ εs] + εX1(t) = 0 (24)

with ∂X1
∂s < 0, ∂X1

∂t < 0, and dX2
ds < 0.

We can use (12) and (13) to obtain

∂X1

∂s
[t(1 + ε) + s(1 + ε)−By −D′(X1)] +

dX2

ds
[−p′2(X2)

X2

n
+ s(1 + ε)−By]

− ε(T −X1 −X2) = 0
(25)

∂X1

∂t
[t(1 + ε) + s(1 + ε)−By −D′(X1)] + εX1 = 0 (26)

Solving (26) for t we find

t = −s+
By +D′(X1)

1 + ε
− ε

1 + ε

X1

∂X1
∂t

(27)

Plugging (27) into (25)

∂X1

∂s

[
εX1

∂X1
∂t

]
+
dX2

ds

[
− p′2(X2)

X2

n
+ s(1 + ε)−By

]
− ε(T −X1 −X2) = 0 (28)

Solving this equation for s we find:

s =
By + p′2(X2)

X2
n

1 + ε
+

ε

1 + ε

[
T −X1 −X2

dX2
ds

]
+

ε

1 + ε
X1

[ ∂X1
∂s

dX2
ds

∂X1
∂t

]
(29)

Using this value of s we can solve (27) for t

t =
D′(X1)− p′2(X2)

X2
n

1 + ε
− ε

1 + ε

[ ∂X1
∂s X1

dX2
ds

∂X1
∂t

+
T −X1 −X2

dX2
ds

+
X1

∂X1
∂t

]
(30)

To see how the level of subsidy and tax change with changes in MCF, we solve (9) for
first order conditions, using X1(s(ε), t(ε)) and X2(s(ε)). We find the following (see Appendix
B for full calculations):
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ds
dε < 0 if ∂X1

∂t t+X1 > 0⇔ ∂X1
∂t

t
X1

+ 1 > 0⇔ ∂X1

∂t

t

X1︸ ︷︷ ︸
eX1/t

> −1

So ∂s
∂ε < 0 if eX1/t > −1. In other words, an increase in MCF will lead to a decrease

in the second best PES if demand for X1 is inelastic with respect to the tax. As the MCF
increases, the PES becomes more expensive, which requires higher taxes to increase revenue
to pay for it. With inelastic demand for the conventional agriculture good, the increased
tax will not change conventional agriculture production by a large amount, which allows for
the required increase in revenue. However, the amount of land available to set aside for
biodiversity benefits is lower since the amount of land producing the conventional agriculture
good will not change much with an increase in the tax due to its inelasticity of demand.

For the tax, we find that dt
dε > 0 if eX1/t > −1 and ∂X1

∂t /
∂X2
∂s > z/q where

z = p′2(X2(s(ε)))−
1

n
c′′2

(X2(s(ε))

n

)
q = p′1(X1(t(ε), s(ε)))−

1

n
c′′1

(X1(t(ε), s(ε))

n

)
−D′′(X1(t(ε), s(ε)))

So, an increase in MCF leads to an increase in the second best tax when demand for X1

is inelastic and when ∂X1
∂t /

∂X2
∂s > z/q. In other words, the ratio of the change in conven-

tional agriculture production with respect to the tax and the change in organic agriculture
production in response to the PES must be above a certain threshold, represented by z/q.

The condition of having an inelastic demand in response to the tax means that instead
of discouraging the polluting behavior, the tax functions to raise revenue, as an increase in
the tax does not have a large impact on the amount of land a farmer puts into production
of the polluting conventional agricultural good. Typically, we would prefer an environmental
tax to discourage the damaging action and thus bring in less revenue but succeed in reducing
pollution.

For the case where λ > 0, we have the following welfare function:

W (T −X2(t), X2(t))
t

=

∫ T−X2(t)

0
p1(u)du+

∫ X2(t)

0
p2(v)dv − nc1

(
T −X2(t)

n

)
− nc2

(
X2(t)

n

)
+B

(
T − (T −X2(t))−X2(t)

)
−D(T −X2(t)) + εtX1(t)− εs(T − (T −X2(t))−X2(t))

(31)

Maximizing welfare yields the following first order condition:

dX2

dt
[−p1(T −X2) +p2(X2) + c′1(

T −X2

n
)− c′2(

X2

n
) +D′(T −X2)− εt] + ε(T −X2) = 0 (32)

Using equations (6) and (7) from the profit maximization, we have

−p1 + c′1(X1) + p2(X2)− c′2(X2) = −t− p′2(X2)
X2

n
(33)

We can then write equation (32) as

dX2

dt

[
− t− p′2(X2)

X2

n
+D′(T −X2)− εt

]
+ ε(T −X2) = 0 (34)
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Then, we solve equation (34) and find

t =
D′(T −X2)− p′2(X2)

X2
n

1 + ε
+

ε

1 + ε

(
T −X2

dX2
dt

)
(35)

Without the MCF, the tax is the same in both scenarios, but once the MCF is introduced,
the tax in the λ = 0 scenario is different from the tax in the λ > 0 scenario.

As in the preceding case, here the tax is affected by the MCF. To see how t changes with
a change in ε, we apply the implicit function theorem on (32), which we will call J :

dt

de
= −

∂J
∂ε
∂J
∂t

= −
dX1
dt t+X1

dX1
dt [p′1(X1) + p′2(T −X1)− 1

nc
′′
1(X1

n )− 1
nc
′′
2(T−X1

n )−D′′(X1)] + 2dX1
dt ε

We know that the denominator of the above expression is negative. If dt
dε > 0, then

dX1

dt
t+X1 > 0

dX1

dt

t

X1
+ 1 > 0

dX1

dt

t

X1
> −1

Here, the relationship between the tax and MCF is positive when the demand for the
conventional agriculture good is inelastic, just as in the case where λ = 0.

5 Conclusion and recommendations

Pollution and biodiversity benefits are two externalities associated with agricultural land that
lead to market failure. Multiple market failures require multiple policies to address them.
Here, we looked at the scenario where a tax and a PES scheme are used to address pollution
and biodiversity conservation, respectively. We added an additional market distortion in the
form of an oligopoly in organic agriculture production. We found that the second best tax on
conventional agriculture production is higher than the marginal damage from pollution, and
the second best PES for biodiversity is lower than the marginal benefit. We then introduce
the marginal cost of public funds in order to investigate how the PES and the Pigouvian tax
are modified. The PES decreases with the MCF whereas the Pigouvian tax increases with
the MCF, provided that demand for the conventional agriculture good is inelastic.

This article does not take into account the additionality issue under asymmetric infor-
mation. Indeed, the farmer can leave some land uncultivated before any policy is introduced
because it is not profitable for him to use all of his land in agricultural production. In this
case, when a PES scheme is implemented, there is a windfall effect because the farmer will
be subsidized for all uncultivated land, even the land he would have left uncultivated in the
absence of any policy. The size of the windfall effect can be unknown to the regulator. One
proposed solution to the asymmetric information problem that has been widely explored in
the literature is to use reverse auctions to allocate PES contracts.
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Appendices

A Welfare function concavity

We construct the Hessian matrix, I(W ):

I(W ) =

[
∂2X1
∂s2

[F ] + (∂X1
∂s )2[F ′] + d2X2

ds2
[G] + (dX2

ds )2[G′] ∂2X1
∂s∂t [F ] + ∂X1

∂s
∂X1
∂t [F ′]

∂2X1
∂s∂t [F ] + ∂X1

∂s
∂X1
∂t [F ′] ∂2X1

∂t2
[F ] + (∂X1

∂t )2[F ]

]
(36)

where

F = p1(X1)− c′1(
X1

n
)−By −D′(X1)

F ′ = p′1(X1)−
1

n
c′′1(

X1

n
) +Byy −D′′(X1)

G = p2(X2)− c′2(
X2

n
)−By

G′ = p′2(X2)−
1

n
c′′2(

X2

n
) +Byy

Following our assumptions about demand and cost structures, we can simplify (36) to

I(W ) =

[
(∂X1
∂s )2[F ′] + (dX2

ds )2[G′] ∂X1
∂s

∂X1
∂t [F ′]

∂X1
∂s

∂X1
∂t [F ′] (∂X1

∂t )2[F ′]

]
(37)

Based on our assumptions, we know F ′ < 0 and G′ < 0. Using this information, we
calculate the determinant of I.

Det(I) =

[[
(
∂X1

∂s
)2[F ′] + (

dX2

ds
)2[G′]

]
∗ (
∂X1

∂t
)2[F ′]

]
−

[
∂X1

∂s

∂X1

∂t
[F ′] ∗ ∂X1

∂s

∂X1

∂t
[F ′]

]
(38)

We can simplify (38) to:

Det(I) = (
dX2

ds
)2[G′](

∂X1

∂t
)2[F ′] > 0 (39)

Thus, we have a concave welfare function for oligopoly, because the determinant is positive
while [dX2

ds ]2[G′] + [∂X1
∂t ]2[F ′] < 0.

Next, we look at the case where λ > 0, referring to (19):

d2W

dt2
=
d2X1

dt2
[p1(X1)− p2(T −X1)− c′1(

X1

n
) + c2(

T −X1

n
)−D′(X1)]

+ (
dX1

dt
)2[p′1(X1) + p′2(T −X1)−

1

n
c′′1(

X1

n
)− 1

n
c′′2(

T −X1

n
)−D′′(X1)]

(40)

We assume d2X1
dt2

= 0 and c′′′i = 0, such that we now have

(
dX1

dt
)2
[
p′1(X1) + p′2(T −X1)−

1

n
c′′1(

X1

n
)− 1

n
c′′2(

T −X1

n
)−D′′(X1)

]
< 0 (41)

Therefore, the welfare function is still concave when λ > 0.
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A.1 Marginal cost of public funds

Starting with the case where λ = 0, we use (23) and (24) to create the Hessian:

H =

[
a b
c d

]
(42)

Where

a =
∂2X1

∂s2
[A+ ε(t+ s)] + (

∂X1

∂s
)2[A′] + 2ε

∂X1

∂s
+
d2X2

ds2
[B + εs] + [

dX2

ds
]2[B′] + 2ε

dX2

ds

b =
∂2X1

∂s∂t
[A+ ε(t+ s)] +

∂X1

∂t

∂X1

∂s
[A′] + ε[

∂X1

∂s
+
∂X1

∂t
]

c =
∂2X1

∂t∂s
[A+ ε(t+ s)] +

∂X1

∂t

∂X1

∂s
[A′] + ε[

∂X1

∂s
+
∂X1

∂t
]

d =
∂2X1

∂t2
[A+ ε(t+ s)] + (

∂X1

∂t
)2[A′] + 2ε

∂X1

∂t

and

A = p1(X1)− c′1(
X1

n
)−By −D′(X1)

B = p2(X2)− c′2(
X2

n
)−By

A′ = p′1(X1)−
1

n
c′′1(

X1

n
) +Byy −D′′(X1)

B′ = p′2(X2)−
1

n
c′′2(

X2

n
) +Byy

Thanks to our assumptions, we can simplify the Hessian to

H =

[
(∂X1
∂s )2[A′] + [dX2

ds ]2[B′] + 2ε(∂X1
∂s + dX2

ds ) (∂X1
∂t )2[A′] + 2ε(∂X1

∂t )

(∂X1
∂t )2[A′] + 2ε(∂X1

∂t ) (∂X1
∂t )2[A′] + 2ε∂X1

∂t

]
(43)

Det =

{
(
∂X1

∂s
)2[A′] + [

dX2

ds
]2[B′] + 2ε(

∂X1

∂s
+
dX2

ds
) ∗ (

∂X1

∂t
)2[A′] + 2ε

∂X1

∂t

}
−
{

(
∂X1

∂t
)2[A′] + 2ε

∂X1

∂t

}2

simplifying:

Det = (
dX2

ds
)2(

∂X1

∂t
)2[A′][B′] + 2ε(

∂X1

∂t

dX2

ds
)(
dX2

ds
[B′] +

∂X1

∂t
[A′])

+ 4ε2
dX2

ds

∂X1

∂t
> 0

With A′ < 0 and B′ < 0, we find a positive determinant. And, because (∂X1
∂s )2[A′] +

[dX2
ds ]2[B′] + 2ε(∂X1

∂s + dX2
ds ) < 0, we have a concave function.

For the case where λ > 0, we refer to (32):
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d2W

dt2
=
d2X1

dt2
[E + εt] +

(
dX1

dt

)2

[E′] + 2ε
dX1

dt

where

E = p1(X1)− p2(T −X1)− c′1
(
X1

n

)
+ c′2

(
T −X1

n

)
−D′(X1)

and

E′ = p′1(X1) + p′2(T −X1)−
1

n
c′′1

(
X1

n

)
− 1

n
c′′2

(
T −X1

n

)
−D′′(X1) < 0

With our assumptions we can simplify this to:

d2W

dt2
=

(
dX1

dt

)2

[E′] + 2ε
dX1

dt
< 0 (44)

Thus, our welfare function is still concave when λ > 0.

B How the tax and PES change with the MCF

We know from section 4.3 that the levels of tax and PES depend on the marginal cost of
public funds, ε, so the tax and PES must satisfy conditions (23) and (24).

We set:

q = p′1(X1(t(ε), s(ε)))−
1

n
c′′1

(X1(t(ε), s(ε))

n

)
−D′′(X1(t(ε), s(ε))) < 0

z = p′2(X2(s(ε)))−
1

n
c′′2

(X2(s(ε))

n

)
< 0

Additionally, we know: ∂X1
∂t = ∂X1

∂s < 0.
Next, we differentiate (23) and (24) by ε and rearrange the equations into matrix form:[

i j
k l

] [
ds
dε
dt
dε

]
=

[
−∂X1

∂s [t+ s]− ∂X2
∂s s+ (T −X1−X2)

−∂X1
∂t (t+ s)−X1

]
(45)

where

i =
∂X1

∂s
[(q +Byy)

∂X1

∂s
+ 2ε+Byy

∂X2

∂s
] +

∂X2

∂s
[(z +Byy)

∂X2

∂s
+Byy

∂X1

∂s
+ 2ε]

j =
∂X1

∂s
[(q +Byy)

∂X1

∂t
+ 2ε+Byy

∂X2

∂s
]

k =
∂X1

∂t
[(q +Byy)

∂X1

∂s
+Byy

∂X2

∂s
+ 2ε]

l =
∂X1

∂t
[(q +Byy)

∂X1

∂t
+ 2ε]

Next, we multiply each side of the equation by the inverse of

[
i j
k l

]
to find ds

dε and dt
dε
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[
ds
dε
dt
dε

]
=

[
i j
k l

]−1 [−∂X1
∂s [t+ s]− ∂X2

∂s s+ (T −X1 −X2)

−∂X1
∂t (t+ s)−X1

]
(46)

where [
i j
k l

]−1
=

1

det

[
l −j
−k i

]
Calculating the determinant of

[
i j
k l

]
we find:

Det =
{∂X1

∂t
[(q +Byy)

∂X1

∂t
+ 2ε]

}{∂X1

∂s
[(q +Byy)

∂X1

∂s
+ 2ε+Byy

∂X2

∂s
]

+
∂X2

∂s
[(z +Byy)

∂X2

∂s
+Byy

∂X1

∂s
+ 2ε]

}
−
[
− ∂X1

∂s
[(q +Byy)

∂X1

∂t
+ 2ε+Byy

∂X2

∂s
]
]2

(47)

Det =
∂X1

∂t

2∂X2

∂s

2

qz +
∂X1

∂t

2∂X2

∂s

2

qByy +
∂X1

∂t

2∂X2

∂s

2

zByy + 2
∂X1

∂t

2∂X2

∂s
qε+ 2

∂X1

∂t

∂X2

∂s

2

zε

+ 2
∂X1

∂t

2∂x2
∂s

Byyε+ 2
∂X1

∂t

∂X2

∂s

2

Byyε+ 4
∂X1

∂t

∂X2

∂s
ε2 > 0

(48)
because q < 0 and z < 0, ∂X1

∂t = ∂X1
∂s < 0 and ∂X2

∂s < 0.

We can now calculate ds
dε using (46):

∂s

∂ε
=

1

det

{
[
∂X1

∂t
[(q +Byy)

∂X1

∂t
+ 2ε]

}{
− ∂X1

∂s
[t+ s]− ∂X2

∂s
s+ (T −X1 −X2)

}
+

1

det

{
− ∂X1

∂s
[(q +Byy)

∂X1

∂t
+ 2ε+Byy

∂X2

∂s
]
}{
− ∂X1

∂t
(t+ s)−X1

} (49)

∂s

∂ε
=

1

det

{
− ∂X1

∂t

2∂X2

∂s
qs+

∂X1

∂t

2

q(T −X2) +
∂X1

∂t

2∂X2

∂s
tByy︸ ︷︷ ︸

>0

+
∂X1

∂t

2

Byy(T −X2)

+
∂X1

∂t

∂X2

∂s
X1Byy − 2

∂X1

∂t

∂X2

∂s
sε+ 2

∂X1

∂t
ε(T −X2)

} (50)

∂s
∂ε < 0 if

∂X1

∂t

2∂X2

∂s
tByy +

∂X1

∂t

∂X2

∂s
X1Byy < 0⇔ ∂X1

∂t

∂x2
∂s

Byy[
∂X1

∂t
t+X1] < 0 (51)

i.e. if ∂X1
∂t t+X1 > 0⇔ ∂X1

∂t
t
X1

+ 1 > 0⇔ ∂X1

∂t

t

X1︸ ︷︷ ︸
eX1/t

> −1

So ∂s
∂ε < 0 if eX1/t > −1.
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Next, looking at the tax we find:

∂t

∂ε
=

1

det

{∂X1

∂t

[
(q +Byy)

∂X1

∂s
+Byy

∂X2

∂s
+ 2ε

][
− ∂X1

∂s
(t+ s)− ∂X2

∂s
s+ (T −X1 −X2)

]
+
[∂X1

∂s
[(q +Byy)

∂X1

∂s
+ 2ε+Byy

∂X2

∂s
] +

∂X2

∂s
[(z +Byy)

∂X2

∂s
+Byy

∂X1

∂s
+ 2ε]

]
[
− ∂X1

∂t
(t+ s)−X1

]}
(52)

∂t

∂ε
=

1

det

{∂X1

∂t

2∂X2

∂s
qs− ∂X1

∂t

∂X2

∂s

2

zs− ∂X1

∂t

∂X2

∂s

2

zt− ∂X1

∂t

2

qT − ∂X2

∂s

2

zx1 +
∂X1

∂t

2

qx2

− ∂X1

∂t

2∂X2

∂s
tByy −

∂X1

∂t

∂X2

∂s

2

tByy −
∂X1

∂t

2

TByy −
∂X1

∂t

∂X2

∂s
TByy −

∂X1

∂t

∂X2

∂s
X1Byy

− ∂X2

∂s

2

X1Byy +
∂X1

∂t

2

X2Byy +
∂X1

∂t

∂X2

∂s
X2Byy − 2

∂X1

∂t

∂X2

∂s
tε− 2

∂X1

∂t
T ε

− 2
∂X2

∂s
X1ε+ 2

∂X1

∂t
X2ε

}
(53)

∂t

∂ε
=

1

det

{∂X1

∂t

2∂X2

∂s
qs− ∂X1

∂t

2

q(T −X2)−
∂X1

∂t

2

Byy(T −X2)− 2
∂X1

∂t
ε(T −X2)

− ∂X1

∂t

2∂X2

∂s
tByy −

∂X1

∂t

∂X2

∂s
X1Byy −

∂X1

∂t

∂X2

∂s

2

zs− ∂X1

∂t

∂X2

∂s

2

zt

− ∂X1

∂t

∂X2

∂s
Byy(T −X2)−

∂X2

∂s

2

X1Byy − 2
∂X2

∂s
X1ε−

∂X2

∂s

2

zX1 − 2
∂X1

∂t

∂X2

∂s
tε

− ∂X1

∂t

∂X2

∂s

2

tByy

}
(54)

We know that

• −∂X1
∂t

2 ∂X2
∂s tByy −

∂X1
∂t

∂X2
∂s X1Byy > 0 ⇔ −∂X1

∂t
∂X2
∂s Byy[

∂X1
∂t t−X1] > 0⇔ ∂X1

∂t
t
X1

> −1

• −2∂X1
∂t

∂X2
∂s tε− 2∂X2

∂s X1ε > 0⇔ −2∂X2
∂s ε[

∂X1
∂t t+X1] > 0⇔ ∂X1

∂t
t
X1

> −1

• −∂X1
∂t

∂X2
∂s

2
zt− ∂X2

∂s

2
zX1 > 0 if −∂X2

∂s

2
z[∂X1

∂t t+X1] > 0⇔ ∂X1
∂t

t
X1

> −1

• −∂X2
∂s

2
X1Byy − ∂X1

∂t
∂X2
∂s

2
tByy > 0 if −∂X2

∂s

2
Byy[

∂X1
∂t t+X1] > 0⇔ ∂X1

∂t
t
X1

> −1

• −∂X1
∂t

∂X2
∂s

2
zs+ ∂X1

∂t

2 ∂X2
∂s qs > 0⇔ ∂X1

∂t
∂X2
∂s s[

∂X1
∂t q −

∂X2
∂s z] > 0⇔ [∂X1

∂t q −
∂X2
∂s z] > 0⇔

∂X1
∂t q >

∂X2
∂s z

∂t
∂ε > 0 if eX1/t > −1 and ∂X1

∂t q >
∂X2
∂s z
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