Introduction Context and Literature Methodology and Data Results Conclusion

Did Green Payments' Crop Diversification Induce Change in Environmental, Economic and Land Use Conditions in France?

Thierno Bocar Diop

CESAER UMR1041, INRAe, Institut Agro, Université Bourgogne Franche-Comté

16 Décembre 2022

- Introduction
- 2 Context and Literature
- Methodology and Data
- Results
- 6 Conclusion

2013 CAP Reform

Departure:

- Direct payments ⇒ 1st Pillar CAP;
- Criticism: environment and efficiency (EU Commission, 2012);
- Proposed solution: Green payments with 2013 CAP Reform.

Objectives:

- Improvement of environmental performances;
- Economic support to farmers.

Existing studies

Three dimensions of interest:

- Environment ⇒ (Cortignani et al., 2017; Solazzo et al., 2016);
- Land-Use \Rightarrow (Gocht et al., 2017; Solazzo et al., 2016);
- Economic \Rightarrow (Cortignani et al., 2017; Gocht et al., 2017).

Contribution of the study:

Value Added:

- Effect on technical and environmental efficiency (TE, EE);
- Causal impact with quasi-experimental technique;
- Comprehensive study on the three dimensions;
- Additionnality estimations.

- Introduction
- Context and Literature
 - Crop diversification requirements
 - Literature review
- Methodology and Data
- 4 Results
- 6 Conclusion

Conditions to meet for CDC:

Crop Diversity

- Less than 10 ha of arable land ⇒ Exempted;
- More than 10 ha of arable land ⇒ at least 2 crops & main crop share ≤ 75%;
- More than 30 ha of arable land \Rightarrow at least 3 crops, main crop share $\leq 75\%$ & two main crop share $\leq 95\%$.
- Stated objective: soil quality

Overview of existing studies on green payments

Land-use and land prices:

- Main crop share, but reduced when only green payments is considered (Cortignani et al., 2017);
- 4.5% of the total area is relocated with effect driven mainly by EFA (Louhichi et al., 2018);
- / Land rental values in North Ireland (Olagunju et al., 2022).

Environmental effect :

- ✓ Ammonia emissions, \ GHG and Ø Nitrogen surplus (Gocht et al., 2017);
- / Crop diversity index , \ Nitrogen (Cortignani et al., 2017).

Economic consequences

- \ Total production and \ Farms revenue (Louhichi et al., 2017; Cortignani et al., 2017; Solazzo and Pierangeli, 2016; Cimino et al., 2015)
- \ Total production, but \ / Farms revenue due to price effects (Gocht et al., 2017)

Overview of existing studies on green payments

Land-use and land prices:

- Main crop share, but reduced when only green payments is considered (Cortignani et al., 2017);
- 4.5% of the total area is relocated with effect driven mainly by EFA (Louhichi et al., 2018);
- / Land rental values in North Ireland (Olagunju et al., 2022).

• Environmental effect:

- ✓ Ammonia emissions, \ GHG and Ø Nitrogen surplus (Gocht et al., 2017);
- / Crop diversity index , \setminus Nitrogen (Cortignani et al., 2017).

Economic consequences

- Total production and \ Farms revenue (Louhichi et al., 2017; Cortignani et al., 2017; Solazzo and Pierangeli, 2016 Cimino et al., 2015)
- \ Total production, but \ / Farms revenue due to price effects (Gocht et al., 2017)

Overview of existing studies on green payments

Land-use and land prices:

- Main crop share, but reduced when only green payments is considered (Cortignani et al., 2017);
- 4.5% of the total area is relocated with effect driven mainly by EFA (Louhichi et al., 2018);
- / Land rental values in North Ireland (Olagunju et al., 2022).

• Environmental effect:

- ✓ Ammonia emissions, \ GHG and Ø Nitrogen surplus (Gocht et al., 2017);
- / Crop diversity index , \ Nitrogen (Cortignani et al., 2017).

Economic consequences:

- Total production and \ Farms revenue (Louhichi et al., 2017; Cortignani et al., 2017; Solazzo and Pierangeli, 2016; Cimino et al., 2015)
- Total production, but / Farms revenue due to price effects (Gocht et al., 2017)

Crop diversity, Production and Productivity

Production and Income:

- Efficiency use of inputs and complementary (Bommarco et al., 2013; Di Falco et al., 2010)
- Buffer against weeds, pests, and diseases (Lechenet et al., 2014).
- Hedge against price and production risk (Di Falco and Chavas, 2009) or low rainfall (Donfouet et al., 2017).
- But mainly negative for green CDC (Louhichi et al., 2017; Cortignani et al., 2017; Solazzo and Pierangeli, 2016).
- Potential impact on TE and EE via:
 - Input quantity and requirement that depend on each crop;
 - Different level of production following new crop's introduction.

- Introduction
- Context and Literature
- Methodology and Data
 - Econometric Strategy
 - Outcome Variables
 - Data description
- 4 Results
- 5 Conclusion

Difference-in-Discontinuity

Setting:

- Assignment to the treatment or control group is determined according to the known cut-off point randomly;
- Any other evolution around cut-offs is constant over time.
- Exploiting the before/after and policy discontinuity variation.

Application to green payments

- 2013 CAP Reform as natural experiment.
- Comparison:
 - Just below 10 ha vs Just above 10 ha
 - Just below 30 ha vs Just above 30 ha
- Cut-off manipulation test (McCrary, 2008)

Technical and Environmental Efficiency (TE & EE)

The stochastic production frontier can be written as follows (Reinhard et al, 1999):

$$Y_{it} = f(X_{it}; Z_{it}; \beta) \cdot \exp\{V_{it} - U_i\},\tag{1}$$

Where

- Y_{it} is the output for farm i at the t time period;
- X_{it} is a vector of inputs.
- Z_{it} is a environmental detrimental input (crop protection, fertiliser, energy).
- $oldsymbol{\circ}$ eta is a vector of technology parameters,
- \bullet V_{it} measures the effects of statistical noise,
- U_i , measures the inefficiency.

Translog Form of the production function

$$lnY_{it} = \beta_{0}$$

$$+ \sum_{j=1}^{4} \beta_{j} lnX_{kit} + \beta_{z} lnZ_{it}$$

$$+ \frac{1}{2} \sum_{j=1}^{4} \sum_{k=1}^{4} \beta_{jk} lnX_{ijt} * lnX_{ijk}$$

$$+ \sum_{j=1}^{4} \beta_{jz} lnX_{ijt} * lnZ_{it}$$

$$+ \frac{1}{2} \sum_{k=1}^{4} \beta_{zz} (lnZ_{it})^{2} + V_{it} - U_{i}$$
(2)

Technical Efficiency Formula (TE)

TE = observed output / maximum attainable output according to inputs (conventional and pollution-generating) is calculated :

$$TE_{it} = Y_{it} / Y_{it}^*$$

$$= \frac{f(X_{it}; Z_{it}; \beta) \cdot \exp\{V_{it} - U_i\}}{f(X_{it}; Z_{it}; \beta) \cdot \exp\{V_{it}\}}$$

$$= \exp\{-U_i\}$$
(3)

Environmental efficient farm SPF

EE farm is already TE \Rightarrow $U_i = 0$ and $Z_{it} = Z_{it}^F$ with Z_{it}^F the minimal feasible environmentally detrimental input.

$$lnY_{it} = \beta_0$$

$$+ \sum_{j=1}^{4} \beta_j lnX_{kit} + \beta_z lnZ_{it}^F$$

$$+ \frac{1}{2} \sum_{j=1}^{4} \sum_{k=1}^{4} \beta_{jk} lnX_{ijt} * lnX_{ijk}$$

$$+ \sum_{j=1}^{4} \beta_{jz} lnX_{ijt} * lnZ_{it}^F$$

$$+ \frac{1}{2} \sum_{k=1}^{4} \beta_{zz} (lnZ_{it}^F)^2 + V_{it}$$
(4)

Environmental Efficiency Formula (EE)

The EE is deduced by equalling equation (2) to (3) and replacing $lnEE = lnZ_{it}^F - lnZ_{it}$:

$$\mathit{InEE}_{i,t} = \left[- \left(\overbrace{\beta_z + \sum_{j=1}^{m} \beta_{jz} \mathit{InX}_{ij,t} + \beta_{zz} \mathit{InZ}_{i,t}}^{A} \right) \pm \left\{ \left(\overbrace{\beta_z + \sum_{j=1}^{m} \beta_{jz} \mathit{InX}_{ij,t} + \beta_{zz} \mathit{InZ}_{i,t}}^{B} \right) - 2\beta_{zz} U_{i,t} \right\}^{0.5} \right] \beta_{zz}$$

Variables (cont'd)

Table - Outcomes of interest

Dimension	Name	Description
Environment	eveness	Shannon Index
	raten	Fertilizer use ratio
	ratph	Crop protection use ratio
	EE	Environmental Efficiency
Economic	TE	Technical Efficiency
	ebe_uta	Operating Surplus per unpaid workers
	rcai_uta	Income before tax per unpaid workers
Land Use	part_dom	Main crop share
	part_dom2	Two main crop share
	nb	Number of crop

Variables

- Unbalanced panel Data from RICA for 2012-2016 period. Final sample = + 15000 Farms;
- Running Variable = Arable land ⇒ Authors calculations
- Variable for TE and EE:
 - Outputs: Gross agricultural production
 - Inputs:
 - Fixed assets;
 - Utilised Agricultural Area;
 - Labour in Annual Working Unit (AWU);
 - Intermediary Consumption;
 - Environmental Input (Fertiliser + Crop protection + Energy).

- Introduction
- Context and Literature
- Methodology and Data
- Results
 - Main findings
 - Design to fail?
- 6 Conclusion

Crop Diversity effect around 10ha and 30 ha

Results around 10ha

- / Crop diversity index;
- \ Main crop share and two main crop share;
- No effect on TE and EE.

Results around 30ha

- / Number of crop on farm;
- No effect on TE and EE.

Windfall Effects?

Conception or targeting problem?

- Most of farms already respected the diversity criterion (EU, 2017; Louhichi, 2018);
- Problem of targeting or design?

Design to fail?

- Focus on farms that did not respect the diversity criterion before 2013:
- Is there any additionnality?.

Windfall Effects?

Conception or targeting problem?

- Most of farms already respected the diversity criterion (EU, 2017; Louhichi, 2018);
- Problem of targeting or design?

Design to fail?

- Focus on farms that did not respect the diversity criterion before 2013;
- Is there any additionnality?.

Crop Diversity effect around 10ha and 30 ha on non-compliers

Results around 10ha

- / Crop diversity index and number of crop;
- \ TE and EE;

Results around 30ha

• \ TE.

- Introduction
- Context and Literature
- Methodology and Data
- Results
- **6** Conclusion

Summary of results

- Main results
 - Significant effect on land use condition around 10 ha and 30 ha;
- Additionnality?
 - Real additionility around 10 ha at the expenses of TE and EE.
 - Effects driven by compliers before 2013
- Policy Implications :
 - Possible windfall effects:
 - Green payments are not enough (alone) to change agricultural practices.

Summary of results

- Main results
 - Significant effect on land use condition around 10 ha and 30 ha;
- Additionnality?
 - Real additionility around 10 ha at the expenses of TE and EE.
 - Effects driven by compliers before 2013
- Policy Implications :
 - Possible windfall effects:
 - Green payments are not enough (alone) to change agricultural practices.

Summary of results

- Main results
 - Significant effect on land use condition around 10 ha and 30 ha;
- Additionnality?
 - Real additionility around 10 ha at the expenses of TE and EE.
 - Effects driven by compliers before 2013
- Policy Implications :
 - Possible windfall effects:
 - Green payments are not enough (alone) to change agricultural practices.

Introduction Context and Literature Methodology and Data Results Conclusion

