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Abstract: Our main objective in this paper is to propose an approach to allocate variable input 

costs among crops produced by farmers based on panel data including information on input 

expenditure aggregated at the farm level. Our proposed approach simultaneously allows to control 

for unobserved farms and farmers heterogeneity, to address the potential dependence between 

variable input uses and acreage choice decisions, and to ensure consistent values of input use 

estimates. These are indeed major issues generally encountered in the estimation input allocation 

equations. This approach relies on a model of input allocation derived from accounting identities, 

in which unobserved input uses per crop are modeled as time-varying random parameters. Our 

model is estimated, using an extension of the Stochastic Approximation Expectation Maximization 

algorithm, on a sample of French farms’ accounting data. Our estimation results show good 

performance of our approach compared to standard regression approaches generally used by 

agricultural economists.    
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1. Introduction 

Getting information about production costs per crop at the farm level is very important when 

analyzing multi-crop farms’ behaviors. It can indeed be useful to investigate variable input uses 

decisions of farmers for policy purpose. Production costs per crop can also be used as explanatory 

variables in more complex models of production choice (Letort and Carpentier, 2010).  However, 

information on these costs per crop is generally not provided in farm accounting dataset, such as 

Farm Accountancy Data Network (FADN) data, which only include aggregate input expenditures 

at the farm level. Adequate statistical and\or economic modeling are thus necessary to allocate this 

aggregate information among the different crops produced by the farms. 

Different approaches have been proposed to overcome this issue in the agricultural economics 

literature. Carpentier and Letort (2012) distinguish two groups of approaches. The first group 

includes approaches that consider only variable input allocation equations, in which input 

allocation coefficients are treated as unknown parameters to be estimated, these parameters being 

either fixed, parametric functions of exogenous variables, or random (Dixon, Batte and Sonka 

1984; Hornbaker et al., 1989; Just et al., 1990 Dixon and Hornbaker 1992).  The second group of 

approaches considers input allocation equations as a part of a system of equations that includes 

crop yield equations, acreage functions or production equations (Just et al., 1990; Chambers and 

Just, 1989; Letort and Carpentier, 2012). Even if the second approach introduces a lot more 

economic information compared to the first approach, the first approach is the most widely used, 

owing to its ease of implementation using regression approaches, and to the satisfactory results it 

generally provide in terms of production cost predictions compared to the second approach (Just et 

al., 1990). Estimating single variable input allocation equations however raises different issues that 

must be addressed to ensure the consistency of this approach. First, the use of standard regression 

approaches does not guarantee that estimated input costs lie in reasonable ranges. These approaches 

can, for instance, lead to negative estimates of input costs per crop. Second, because input costs 

vary across farms, the observed, but also unobserved, heterogeneity among farms and farmers has 

to be taken into account.  Finally, input uses per crop depend on acreage choice decisions, which 

are also determined by unobserved farm characteristics. This can lead to estimation issues when 

one seeks to account for unobserved farm heterogeneity in input allocation equations.  

Given the limited information generally available in observed data samples, a general way to 



overcome the issues concerning the magnitude of estimated input costs is to impose constraints on 

parameters or to introduce additional out-of-sample information. Approaches based on inequality-

restricted regression estimation (Ray, 1985; Dixon and Hornbaker, 1992), on Bayesian estimation 

(Moxey et Tiffin, 1994; Heckelei et al., 2008) and on Generalized Maximum Entropy estimation 

(Léon et al., 1999) have been proposed to this end. Issues related to the presence of unobserved 

farm heterogeneity in input allocation equations have also been addressed in the literature (Dixon, 

Batte and Sonka 1984; Hornbaker et al., 1989; Dixon and Hornbaker 1992; Hallam et al., 1999). 

However, as pointed out by Lence and Miller (1998), Dixon and Hornbaker (1992) and Carpentier 

and Letort (2012), the random parameter (RP) approaches, generally used in that case, have to deal 

with issues related the dependence between variable input use and acreage choice decisions. Dixon 

and Hornbaker (1992) propose correlation tests, without however proposing a method allowing to 

take these correlations into account, while Carpentier and Letort (2012) propose an approach based 

on control functions, which requires a simultaneous estimation of input use and acreage choices 

equations. To our knowledge, the different approaches proposed in the literature to estimate 

uniquely input allocation equations do thus not allow to simultaneously (i) control for unobserved 

farms and farmers heterogeneity, (ii) deal with the dependence of input uses per crop to acreage 

choices and (iii) guarantee consistent values of input use estimates.  

Our main objective in this paper is to propose an approach allowing to address these three issues. 

To do so, we consider a model of input allocation derived from accounting identities. We use a 

random parameter specification to account for farm unobserved heterogeneity. The unobserved 

input uses per crop are modeled as time-varying random parameters, and we control for the 

potential correlation between crop input uses and acreage decisions by expressing these random 

parameters as functions of (tine-varying) exogenous variables containing acreage shares. To ensure 

that the estimated input uses per crop lie in reasonable ranges, we introduce additional information 

in the model through the distribution of random parameters. We nobly enforce their non-negativity 

constraints by using a lognormal distribution for the random parameters.  

This model is estimated, using an extension of the Stochastic Approximation Expectation 

Maximization (SAEM) algorithm (Delyon et al., 1999), on a sample of French farms’ accounting 

data. Our estimation results show that our RP estimation approach performs better in terms of input 

use predictions than its OLS counterpart. The rest of the paper is structured as follows. In section 



2, we present our model of input use allocation. Our SAEM estimation approach is presented in 

section 3, and the empirical results in section 4. Finally, we conclude. 

2. Random Parameter model of input use allocation 

We consider a set of crops 1,2, ,C C  produced by a farmer i  ( 1, , )i N  in period t. We 

denote by ,c its  the acreage allocated to crop Cc by farmer i in period t. In the following, we focus 

on one variable input used by farmer i to simplify the presentation of the model, given that the 

generalization to J  inputs is straightforward. Let itx  denotes the quantity of input used at the farm 

level by farmer i  at time t  and  ,c itx  denote the quantity of input used per unit of land of crop c . 

The input allocation problem consists in recovering the input quantity 
,c itx  for each crop such that: 

(1) , ,Cit c it c it it itc
x s x s x , 

with ,( : )Cit c itx cx  and  ,( : )Cit c its cs .  

Including the (centered) measurement error term itu , equation (1) becomes: 

(2) , ,Cit c it c it it it it itc
x s x u us x  with [ ] 0itE u . 

This input use equation at the farm level is completed by a model of crop input uses. 

2.1. Model of crop input uses 

One of the main advantages of panel data is that it allows the estimation of models accounting for 

the variability of unobserved determinants - called unobserved heterogeneity - of the modeled 

phenomena (see, e.g., Woodridge, 2002; Arellano and Bonhomme, 2011). In our case, these 

determinants can be unobserved characteristics of the farmers (e.g., aptitudes, motivations) and 

farms (e.g., soil quality, spatial distribution of the plot, available material) which do not vary or 

vary little over time. Here, it is assumed that crop input uses ,c itx  are a transformation of normally 

distributed terms ,c it , this transformation inducing bounds on the values of ,c itx . By doing so, it is 

easy to guarantee that the estimated crop input uses ,c itx   lie in reasonable ranges. For instance, to 



force the positivity of
,c itx , we can assumed that , , , ,exp( )j k it j k itx . More generally, we assume 

that: 

(3) 
, ,( )c it c itx h     

and   

(4) 
, , , ,0 ,c it c i c t c it

  with  
,[ ] 0c itE , 

where h is a non-linear transformation. 
1h  may for instance be a log-normal distribution, a 

censored-normal distribution or a Johnson’s (1949) SB distribution allowing to incorporate 

additional information in the model (Train, 2005).  

As shown in (4), ,c it  is decomposed into three components. First, farm-specific effects ,c i  

correspond to mean values of ,c it . ,c i  is assumed to be farm-specific for Cc  and to vary 

randomly across farms. These farm-specific parameters allows accounting for unobserved farms’ 

and farmers’ characteristics. Second, year-specific effect , ,0c t  represent the deviations of ,c it  from 

farm-specific effects ,c i  at time t . For identification purpose, , ,0c t  is normalized to 0 at t=1. 

Third, the error terms of the model of crop input uses ,c it  allow accounting for the effects of 

stochastic events not taken into account in ,c i  or , ,0c t  (e.g., weather events, pest infestation). 

In compact form, equation (4) becomes: 

(5) ,0it i t itμ β α ε   or  
( )( ) 0 ( )ii T i iμ ι β α ε  

where ,( : )it c it c Cμ  and ( ) ( )( : )Hi it itμ μ  are column vector. itε  and  ( )iε , and  ,0tα  and 

0α  are defined similarly.  

We assume that:  

(6) 2

0(0, )Nit iidu , 0( , )Nit iidε 0 Ω  and , 0 0( : ) ( , )Ni c i iidc Cβ ω ψ .  



We also assume that covariance matrices 0Ω  are diagonal. All correlation in crop input uses 

decisions are be captured by iβ  through the covariance matrix 0ψ , which  is unrestricted. Finally, 

we assume that itu , itε  and iβ  are mutually independent, and  that itu , itε , and iβ  are independent 

to 
,c its  for Cc . 

As previously mentioned, itε  capture the effects of stochastics events influencing farmers’ input 

use decisions during the cropping season. These events are thus unknown to farmers at the time of 

acreage choices, in the planting season, implying that they are independent of crop acreages:  

(7) ( | , ) ( | )it it it it itE Eε s z ε s 0 .  

with itz  a vector of observed farmer’s/farm’s characteristics. On the other hand, the assumption of 

independence between iβ  and ,c its  may not be verified since iβ  captures the impacts of unobserved 

farmers’ characteristics that may also affect their acreage choice decisions. To account for this 

potential link between acreage choice and crop input use decisions and avoid bias in the estimation 

of the model, we follow Mundlak (1978) and specify ,c i  as a function of the average acreage share 

of crop c  in farm i . We also introduce acreage shares as control variables in crop input uses model. 

It is actually possible to incorporate in a flexible way observed control variables – including crop 

acreage shares and crop yield levels – in the crop input uses model, such that: 

(8)  , ,0 , . , . ,0 ,( ( ))c i c c i c i c c iEz z π   

(9) , , , ,0 , , ,0 ,( ( ))c it c i c t c it c it c c itEz z δ , 

With , .c iz  the average value of ,c itz  for farm i  and , .( )c iE z  and ,( )c itE z the sample averages of , .c iz  

and ,c itz . ,c itz  can include farmers’ crop acreage share and other farmers observed characteristics. 

Average yields at regional levels, can for instance be used as proxies for the production and sanitary 

conditions of each region, in order to account for the specificity of production in each region in 

order to improve the identification of the crop input uses model. 



To summarize, our input allocation model is a random parameters model where the random 

parameters are time-varying and depend on both (centered) time-invariant and time-varying control 

variables: 

(10) , ,Cit c it c it itc
x s x u  with  2

0(0, )Nit iidu , 

(11) 
, ,( )c it c itx h  , 

 (12) 
, ,0 , . , . ,0 , , ,0 , , ,0 ,( ( )) ( ( ))c it c c i c i c c it c it c c i c t c itE Ez z π z z δ  

where:  

(13) , 0( : ) ( , )C Ni c i iidcη 0 ψ  and , 0( : ) ( , )C Nit c it iidcε 0 Ω . 

The covariance matrix 0Ω  is diagonal matrix while the covariance 0ψ  is unrestricted covariance 

matrix. It is also assumed that itu , itε , and iη  are mutually independent, and itu , itε  and iη  are 

independent to ,c its  for Cc . 

3. Estimation approach 

In this section, to simplify the presentation of the estimation procedure, we rewrite the model in 

the following compact form: 

(14) it it it itx us x  

(15) ( )it itx h μ    

(16) ( )it i i itμ β Z δ ε  and  i i iβ ω Z π η   

where   2

0(0, )Nit iidu ,  0( , )Ni iidη 0 ψ  and 0( , )Nit iidε 0 Ω , and it i it itu η ε s . 

Our model is full parametric, and the parameters to be estimated are:
2( , , , , , )θ ω π δ ψ Ω . Under 

some regularity conditions and using identity specification for the transformation h, it is possible 

to obtain consistent estimates of θ  using a Generalized Least Square (GLS) approach applied to 



data that contain more observations (i.e. more time periods) for each farmer than the number of 

crops to which her/his variable inputs are to be allocated. Yet, this condition (T C ) may not be 

verified in empirical applications using farm panel data. Other problems, such that the multi-

collinearity of its  due to acreage choices complementarity and the heteroscedastic form of the error 

term of the model may make tedious the identification of the model parameters with standard 

approaches. As explained below, our estimation approach allows tackling these issues. We propose 

here to use Maximum Likelihood estimation approach via an extension of EM algorithm. 

3.1. Intermediate results 

Here, we present some intermediate results that are needed in the estimation section. Let define, as 

in previous section, ( ) , ( )( : , )H Ci c it it cμ  such that: 

(17) 
( )( ) ( ) 0 ( )ii T i i iμ ι β Z δ ε . 

( )iμ  follow normal distributions: 

(18) 
( )( ) ( )( ( ) , )N
ii iid T i i iμ ι ω Z π Z δ G   with 

( ) ( ) ( )i i ii T T TG ι ι ψ I Ω . 

The conditional distribution of 0| ;β μ θ  is given by: 

 (19) 0 0 0| ; ( ( ; ), ( ))Niid β β
β μ θ m μ θ V θ  

 with   

( )1 1

, , 1

1 1 1

, ( )

( ; ) ( ) ( ) ( )

( ) ( )

iT

i i it it it

i iT

β β

β

m μ θ V θ Ω μ Z δ ψ ω Z π

V θ ψ Ω

. 

The distribution of  ( ) ( ) 0| , ;i iμ x s θ  has not a standard form since ( )ix  is not linear in μ . Using Bayes’ 

formula, we have: 

(20) 2

( ) ( ) ( ) ( )( | , ; ) ( | , ; ) ( ; )i i i if f fμ x s θ x μ s μ θ  with ( , , , , )θ ω π δ Ω ψ , 

where f defines the density probability function.  



3.2. Maximum Likelihood estimation via TVF-SAEM algorithm  

Now, let define, as in previous section, vectors 
( ) ( : )Hi it itx x , 

( ) ( : )Hi it its s ,  

( ) ( : )Hi it itz z , 
,( : )Ci c i cβ  and 

( ) ( : )Hi it itμ μ . In our model, iβ  and 
( )iμ  are 

considered as missing data. Then, the complete data of our model consists of the vector of observed 

variable
( ) ( ) ( ) ( )( , , )i i i iζ x s z  and of the vector of unobserved variables 

( )( , )i iβ μ , for 1,...,i N . The 

complete data log-likelihood function is the sample log-likelihood function of the joint model of 

the dependent and missing variables, ( ) ( )( , , )i i ix β μ , given the exogenous variables of the model, 

( )is  and ( )iz , for 1,...,i N . The contribution of individual i to the complete data log-likelihood 

function at θ  is given by:  

 (21) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ln ( ; , , | ; ) ln ( , , | , ; )c

i i i i i i i i i ifθ x β μ s z x β μ s z θ  

where: 

(22) 
( ) ( )

( ) ( ) ( ) ( )

2

1 1

ln ( , , | , ; )

      ln ( ( ); ) ln ( ; ) ln ( ; ).
i i

i i i i i

T T

it it it it i it i it t

f

x

x β μ s z θ

s h μ μ β Z δ Ω β ω Z π ψ
 

The term ( , )A B  denotes the probability density function at point A of the standard multivariate 

normal distribution with variance-covariance matrix B. Note that the complete data log-likelihood 

belongs to the exponential family. The corresponding observed data log-likelihood can be obtained 

by integrating the complete data likelihood with respect to missing data: 

(23) ( ) ( ) ( ) ( ) ( ) ( )ln ( ; | , ) ln ( , , | , ; ) ( , )i i i i i if dθ x s z x β μ s z θ μ β . 

Then, the maximum likelihood estimator is obtained by maximizing the observed data log-

likelihood: 

(24) ( ) ( ) ( )1
arg max ln ( ; | , )

tot

NMLE

N i i iiθθ θ x s z . 

Note that ( ) ( ) ( )( ; | , )i i iθ x s z  has no closed form expression and that direct maximization of the 

observed data log-likelihood is problematic since the model is non-linear in its random terms. 



Iterative algorithms as the EM algorithm and its variants are suitable in such cases. Here we use 

the approximated-SAEM algorithm proposed by Allassonnière and Chevallier (2021) which is an 

extension of the SAEM algorithm proposed Delyon et al, (1999) and Kuhn and Lavielle (2004) in 

which the simulation step is improved. This algorithm consists in iterating three steps until 

convergence: a simulation (S) step, a stochastic approximation (SA) step and a maximization (M) 

step. Due to space limitation, we won’t go into more detail in the description of this algorithm here.  

3.3. Accounting for weighted data 

Let define, as in previous section, vectors 
( ) ( : )Hi it itx x , 

( ) ( : )Hi it its s , 

( ) ( : )Hi it itz z , 
,( : )Ci c i cβ and ( ) ( : )Hi it itμ μ . Now, we assume that observations 

may depend on weights ( ) ( : )Hi it iw tw  as in FADN data. Observations itx  conditional on its  

and itz are independently distributed with respect to the weight itw .The complete data likelihood 

depends now on the weights through the following decomposition: 

(25) 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )1
( ; , , | , , ) ( , ; ) ( | , , , ; )

iTc

i i i i i i i i it it it i itt
f f wθ x μ β s z w μ β θ x μ s z θ . 

In this decomposition, only the conditional distribution of observed data itx depends on weights 

itw . Indeed, this is justified by the fact that the distribution of the random parameters of interest is 

the distribution at the population level. If we are interested in the distribution of the random 

parameters at the sample level, it is not necessary to introduce the weights but the hypothesis of 

independence of the observations remains strong. 

It is also assumed that: 

(26) 1
( )

( | , , , ; ) ( | , , ; ) it

it

w

it it it it it it it it itC w
f x w f xμ s z θ μ s z θ  

where ( | , , ; )it it it itf x μ s z θ  is a probability density function of | , ,it it it itx μ s z , and ( )itC w  is a 

normalized constant. Indeed, raise ( | , ; )it it itf x μ s θ  to the power itw in maximum likelihood setting 

is equivalent to “observing itx itw  times given itμ  its  and itz ” in standard approaches. However, 



( | , ; ) itw

it it itf x μ s θ  is not a probability density function and we need to normalize it. Gebru et al., 

(2016) use the same approach to account for weighted data in other context. In our case: 

(27) 
2( 1)( | , , , ; ) ( );(1/ ) n

it it it it it it it it itf x w x wμ s z θ s h μ . 

This specification including weights slightly change our estimation procedure in its simulation step. 

Here again, due to space limitation, we won’t go into more detail in the description of the algorithm, 

the detailed procedure, together with the R package WInputAll developed to implement it on 

various are available from the authors upon request. 

 

4. Empirical application 

4.1 Data 

This section presents an application aimed to illustrate the empirical tractability of our modelling 

approach as well as to demonstrate his ability to predict variable input cost per crop for each farmer 

at each point in time t. The model presented above was applied to a sample of 1081 French (5028 

observations) grain crop producers located in the North and North-East of France and observed 

from 2007 to 2014. Farmers are observed at least three consecutive years in the sample. We 

consider 11 crops produced in this area (wheat, winter barley, spring barley, corn, sugar beets, 

alfalfa, peas, rapeseed, poppy seed, potatoes, starchy potatoes). The available information includes 

acreage and yield levels for each crop and variable input use expenditures, at farms level. This 

sample has been extracted from data provided by an accounting agency located in the French 

territorial division La Marne. Here, we present fertilizer and pesticide use allocation. The advantage 

of the considered data is that the input costs per crop are also available, e.g.: Table 1. shows the 

average fertilizer and pesticide use expenditures (euro/ha, at base 2005 price level) per crop and 

per year, observed in sample (for produced crops). They have been used to validate the results of 

our estimations. Input prices are computed for each category of crops using he hired production 

services price index (base 100 in 2005) obtained from the French department of Agriculture. For 

pesticides, these prices vary from crop to another. However, for fertilizers, we assume the same 

price for all considered crops.  Since these prices may differ from crop to another as in the case of 



pesticides, they are directly introduced in the in the estimation process. This allows accounting for 

price fluctuations other time.  

Table 1 also shows the average crop acreage shares. These vary from one crop to another, and crops 

with large acreage share have generally high production frequency. 

Table 1. Descriptive statistics of the sample 

 

Freq.  of 

productio

n (%) 

Acreage share Pesticide Fertilizer 

Sample 

(%) 

Produced 

(%) 

euro/ha, at base 2005 price 

levels 

Winter wheat 100 35 35 180 187 

Spring barley 87 15 18 102 139 

Winter barley 65 06 10 150 160 

Corn 34 05 14 103 151 

Sugar beet 81 12 15 251 224 

Alfalfa 62 07 11 60 207 

Peas 26 02 07 141 66 

Winter rapeseed 92 16 17 191 181 

Blue opium poppy 08 01 07 63 102 

Potato 11 01 08 704 248 

Starch potato 08 01 10 480 266 

 



4.2. Estimation results 

We estimated input allocation equations for pesticides and fertilizers for the considered 11 crops 

that cover more that 90% of the considered farms. We considered one type of constraints on 

estimated crop input uses. Non-negativity constraint are imposed on crop input uses using log-

normal parameterization ( unconstrained parameterization). We also incorporating crop acreage 

shares observed in sample and other farms/farmers characteristics (e.g., average crop yields by 

department obtained from the French department of Agriculture) as control variables in the crop 

input uses models.  

Our estimations are conducted by using the R package WInputAll developed for this purpose. More 

details this package is given below. The recursive step of simulation of the SAEM algorithm is 

implemented using 100 draws (MCMC) at each iteration. We consider 300 iterations for the first 

stage of estimation where the algorithm explores parameters space without memory, tries to escape 

local maxima and reach quickly the neighborhood of the maximum likelihood estimator. The 

algorithms converges without difficulties and convergences of parameters are checked using plot 

of the sequences of estimated parameters at each iteration. The global convergence is also checking 

regarding the plot of the sequence of the estimated complete data log-likelihood functions, as it 

resumes all information in parameters. 

Selected estimation results are reported in Table 2 and Table 3, the complete results being available 

from the authors upon request. These results show that the model fits relatively well to the data. 

Most parameters are well estimated especially the expectations and the variance parameters of 

random parameters. Table 2 shows the expectations and the variances of the parameters, which are 

statistically significant and demonstrate that unobserved heterogeneity matters in farmers’ crop 

input uses. 

 

 

 

 



Table 2. Parameters estimates: estimated distribution of random parameters 

 Pesticide (%) Fertilizer (%) 

, ,

, , ,

ln( )k it k k i

k i k i k it

x z π

z δ
 

Expecta -

tion:  k           

(SE) 

Variance  

of  
,k i

      

(SE) 

Variance 

of   
,k it

          

(SE) 

Expecta -

tion:  k           

(SE) 

Variance     

of   
,k i

        

(SE) 

Variance 

of  
,k it

  

(SE) 

Winter wheat 40.8 (0.8) 5.4 (0.3) 0.2 (0.0) 18.6 (0.5) 3.0 (0.2) 0.2 (0.0) 

Spring barley -12.2 (0.3) 0.5 (0.0) 0.2 (0.0) 11.2 (0.5) 2.2 (0.1) 0.3 (0.0) 

Winter barley 54.9 (0.3) 0.6 (0.1) 0.3 (0.0) 62.4 (0.5) 1.6  (0.1) 0.2 (0.0) 

Corn -06.8 (0.3) 0.8 (0.1) 0.3 (0.0) 38.3 (0.3) 0.9 (0.1) 0.2 (0.0) 

Sugar beet 89.3 (0.4) 1.2 (0.1) 0.2 (0.0) 85.4 (0.4) 1.5 (0.1) 0.2 (0.0) 

Alfalfa -218.7 (2.4) 0.1 (0.0) 0.2 (0.0) 97.1 (0.5) 1.9 (0.1) 0.2 (0.0) 

Peas 23.0 (0.2) 0.3 (0.0) 0.1 (0.0) 30.6 (0.3) 0.4 (0.0) 0.3 (0.0) 

Winter rapeseed 73.1 (0.6) 2.8 (0.2) 0.3 (0.0) 58.1 (0.5) 2.6 (0.1) 0.2 (0.0) 

Blue opium poppy -26.5 (0.4) 1.0 (0.1) 0.2 (0.0) 33.5 (0.4) 0.7 (0.1) 0.2 (0.0) 

Potato 194.4 (0.4) 0.5 (0.0) 0.2 (0.0) 99.1 (0.5) 2.1 (0.1) 0.1 (0.0) 

Starch potato 149.5 (0.2) 0.1 (0.0) 0.2 (0.0) 82.2 (0.4) 0.8 (0.1) 0.2 (0.0) 

Once we have estimated the parameters characterizing the distribution of the random parameters 

( )iμ , we can “statistically calibrate” those parameters for each farmer in our sample and thus obtain 

a set of farmer specific “calibrated” models that can then be used to predict itx , exp( )it itx μ  for 

H it . In this study, the specific parameter ( )iμ  of farm i is calibrated as the mode of its (simulated) 

probability distribution conditional on observed data, when it is used. One interesting feature is 

that this procedure also allows us to calibrate the potential input cost itx  corresponding to crops 

that have not been grown by the considered farmer. The estimated farmer input cost ˆ
itx  compared 



to the real values, allow us to compute fitting criteria, Sim-R², which are reported in Table 3. The 

Sim-R² criterion measures the quality of the prediction of the observed choices of farmers by the 

estimated models. It is obtained by regress the observed value on predicted value. These estimated 

criteria tend to show that the proposed model offers a satisfactory fit to our data. Also, the estimates 

crop input uses means lies in reasonable range regarding the sample average of crop input uses. 

Table 3. Fitting criteria 

 Pesticide Fertilizer 

 
Sim-

R2 

% 

AAD Estimated 

mean  

(S.d.t) 

Sample 

Average 

Sim-

R2  

% 

AAD Estimated 

mean  

(S.d.t) 

Sample 

Average 

(S.d.t) 

Winter wheat 54.24 0.31 173 (41) 180 (40) 74.53 0.24 148 (40) 187 (47) 

Spring barley 16.27 0.24 97 (09) 102 (28) 60.96 0.19 128 (25) 139 (38) 

Winter barley 5.12 0.41 178 (16) 150 (41) 47.50 0.29 207 (39) 160 (42) 

Corn 2.78 0.37 94 (08) 103 (35) 33.60 0.30 146 (16) 151 (42) 

Sugar beet 19.86 0.63 246 (29) 251 (65) 59.79 0.34 274 (53) 224 (71) 

Alfalfa 2.51 0.58 11 (0.7) 60 (27) 38.87 0.77 299 (50) 207 (80) 

Peas 6.59 0.47 129 (17) 141 (42) 1.30 0.31 131 (08) 66 (33) 

Winter rapeseed 33.45 0.36 235 (38) 191 (49) 65.67 0.28 196 (35) 181 (47) 

Blue opium poppy 0.28 0.19 74 (6) 63 (28) 0.17 0.26 140 (18) 102 (36) 

Potato 7.83 1.53 708 (43) 704 (144) 13.18 0.66 268 (51) 248 (67) 

Starch potato 39.2 1.01 448 (23) 480 (113) 53.74 0.52 245 (26) 266 (78) 

Total input 82    80    

 



Figures 1-3 display our results for three selected crops wheat, rapeseed and potato. Input uses are 

measured per ha in 100€ at the 2005 prices. Figure 1 demonstrate that we obtain reasonably good 

results when estimating fertilizer and pesticide input uses for winter wheat, which is produced by 

all sampled farmers and represents 35% of the arable crop acreage on average in our dataset. These 

Figures plot the estimated per hectare input use levels  against their observed “true” counterparts. 

Of course, our estimated input use levels significantly differ from their true counterparts. But, most 

estimates lie within reasonable ranges around their true counterparts. For instance the average 

difference between the true and estimated (in absolute value, AAD) fertilizer use equals .37 while 

the average fertilizer use equals about 2 (i.e., about 200€/ha at the 2005 fertilizer prices). Yet, we 

underestimate fertilizer uses. Rapeseed is produced by 92% of the sampled farms but its average 

acreage share doesn’t exceed 16%. Figure 2 shows that the estimated fertilizer and pesticide use 

for rapeseed are of lower quality than those for wheat, and that we overestimate pesticide uses for 

rapeseed. Figure 3 shows that our estimation approach fits relatively poorly the chemical input uses 

for potato production, which only concerns 11% of the sampled farms (for an average crop acreage 

of 2%).  

 

            

Figure 1. Observed  versus Estimated pesticide (left) and fertilizer (right) uses for wheat 

(Marne dataset, 100€/ha, at 2005 price levels) 

 



             

Figure 2. Observed  versus Estimated pesticide (left) and fertilizer (right) uses for rapeseed 

(Marne dataset, 100€/ha, at 2005 price levels) 

             

Figure 3. Observed  versus Estimated pesticide (left) and fertilizer (right) uses for potato 

(Marne dataset, 100€/ha, at 2005 price levels) 

 

 

 

5. Conclusion  

In this study, we consider random parameter input allocation model. It allows characterizing 

unobserved heterogeneity across farms and incorporating non-negativity constraints on crop input 



uses in flexible way. Our results show that (i) recovering pesticide uses is generally more difficult 

than recovering fertilizer uses, (ii) estimation accuracy decreases with the average acreage share of 

the considered crop and (iii) average estimated input uses are close to their true counterparts, in 

general. These results are promising. 

We are currently investigating the effects of various constraints as means for improving crop input 

use estimates. Our final objective is (i) to characterize the models and constraint sets yielding the 

most accurate results and (ii) to devise an algorithm for estimating the considered models that is 

relatively easy to code, and to provide suitable ranges for its tuning parameters. 

 

 

  



6. References 

Arellano, M., and Bonhomme, S. (2011). Nonlinear panel data analysis. Annu. Rev. Econ., 3(1), 

395-424. 

Allassonnière, S., and Chevallier, J. (2021). A new class of stochastic EM algorithms. Escaping 

local maxima and handling intractable sampling. Computational Statistics and Data Analysis, 

159, 107159. 

Chambers, R. G., and Just, R. E. (1989). Estimating multioutput technologies. American Journal 

of Agricultural Economics, 71(4), 980-995. 

Carpentier, A., and Letort, E. (2012). Accounting for heterogeneity in multicrop micro-

econometric models: implications for variable input demand modeling. American Journal of 

Agricultural Economics, 94(1), 209-224. 

Comets, E., Lavenu, A., & Lavielle, M. (2017). Parameter estimation in nonlinear mixed effect 

models using saemix, an R implementation of the SAEM algorithm. 

Delyon, B., Lavielle, M., and Moulines, E. (1999). Convergence of a stochastic approximation 

version of the EM algorithm. Annals of statistics, 94-128. 

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete 

data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 

39(1), 1-22. 

Dixon, B. L., Batte, M. T., and Sonka, S. T. (1984). Random coefficients estimation of average 

total product costs for multiproduct firms. Journal of Business & Economic Statistics, 2(4), 360-

366. 

Dixon, B. L., and Hornbaker, R. H. (1992). Estimating the technology coefficients in linear 

programming models. American journal of agricultural economics, 74(4), 1029-1039. 

Hallam, D., Bailey, A., Jones, P., and Errington, A. (1999). Estimating input use and production 

costs from farm survey panel data. Journal of Agricultural Economics, 50(3), 440-449. 

Heckelei, T., Mittelhammer, R. C., and Jansson, T. (2008). A Bayesian alternative to generalized 

cross entropy solutions for underdetermined econometric models (No. 1548-2016-132440). 

Hornbaker, R. H., Dixon, B. L., and Sonka, S. T. (1989). Estimating production activity costs for 

multioutput firms with a random coefficient regression model. American Journal of Agricultural 

Economics, 71(1), 167-177. 

Just, R. E., Zilberman, D., Hochman, E., and Bar‐Shira, Z. (1990). Input allocation in multicrop 

systems. American Journal of Agricultural Economics, 72(1), 200-209. 

Kuhn, E., and Lavielle, M. (2005). Maximum likelihood estimation in nonlinear mixed effects 

models. Computational statistics & data analysis, 49(4), 1020-1038. 

Lence, S. H., and Miller, D. J. (1998). Recovering Output‐Specific Inputs from Aggregate Input 

Data: A Generalized Cross‐Entropy Approach. American Journal of Agricultural Economics, 

80(4), 852-867. 

Léony, Y., Peeters, L., Quinqu, M., and Surry, Y. (1999). The Use of Maximum Entropy to 

Estimate Input‐Output Coefficients From Regional Farm Accounting Data. Journal of 

Agricultural Economics, 50(3), 425-439. 



Letort, E., and Carpentier, A. (2010). Variable Input Allocation: Why Heterogeneity Matters? 

(No. 704-2016-48235). 

Meng, X. L., and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: 

A general framework. Biometrika, 80(2), 267-278. 

Mundlak, Y. (1978). On the pooling of time series and cross section data. Econometrica: journal 

of the Econometric Society, 69-85. 

Moxey, A., and Tiffin, R. (1994). Estimating linear production coefficients from farm business 

survey data: A note. Journal of Agricultural Economics, 45(3), 381-385. 

Panhard, X., and Samson, A. (2009). Extension of the SAEM algorithm for nonlinear mixed 

models with 2 levels of random effects. Biostatistics, 10(1), 121-135. 

Ray, S. C. (1985). Methods of estimating the input coefficients for linear programming models. 

American journal of agricultural economics, 67(3), 660-665. 

Wei, G. C., and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and 

the poor man's data augmentation algorithms. Journal of the American statistical Association, 

85(411), 699-704. 

Wooldridge, J. M. (ed.) (2010). Econometric analysis of cross section and panel data. MIT press. 

 

 


