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Abstract

Understanding commodity prices dynamics is of crucial importance for assessing the persistence of
cost-push costs or for countries dependent on commodity exports. Unfortunately, despite decades of
research, the workhorse theoretical model in the field, the rational expectations storage model, is yet
to be empirically validated. This paper provides the first full empirical test of the storage model. We
first build a new storage model featuring a supply response, long-run demand and cost trends, and four
structural shocks. We then develop a flexible empirical approach which relies on the indirect inference
method and exploits the joint dynamics of prices and quantities unlike previous estimations which only
use price information. The information contained in quantities is essential to relax restrictive identifying
assumptions and empirically assess the overall consistency of the model’s new features. Finally, we carry
out a structural estimation on the aggregate index of the world most important staple food products: maize,
rice, soybeans, and wheat. The results show that our extended storage model is consistent with most of
the moments in the data, including the high price autocorrelation of which up to 42% can be explained by
the transfer of inventories over time. They also show that, although for these commodities supply shocks
are the main drivers of market dynamics, over the past 60 years all price spikes have been associated with
large positive demand shocks.
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1 Introduction

Speculative storage by allowing the transfer of commodities from one period to another and by allowing
prices to react immediately to news about future market conditions is a crucial determinant of commodity
price dynamics. While this insight is well recognized empirically (see, e.g., Kilian and Murphy, 2014;
Letta et al., 2022), the theory underpinning this behavior is far from being empirically validated. Despite
being widely used in many applied and policy works (Gouel, 2013b; Porteous, 2019; Steinwender, 2018),
the framework provided by the rational expectations storage model was rejected by the first estimations of
Deaton and Laroque (1992, 1996). Deaton and Laroque found that a simple storage model while able to
account qualitatively for many of the stylized facts of commodity price dynamics is not able to match the
level of price autocorrelation observed in the data. Subsequent work offered some solutions to raise the
persistence induced by the model and better match this central feature of the data (Cafiero et al., 2011, 2015;
Gouel and Legrand, 2017), but all these studies build on Deaton and Laroque’s approach where the model
is estimated only on prices, which requires restrictive identifying assumptions, prevents estimation of all
the model parameters, and have typically involved an all-or-nothing approach to the autocorrelation issue.
Indeed, by forcing a simple storage model to explain all the observed price persistence by the transfer of
inventories over time, either shocks need to be autocorrelated such that all the persistence comes from the
shocks themselves and storage is irrelevant (Deaton and Laroque, 1996); or shocks are assumed i.i.d. and all
the persistence is generated by storage which requires negligible storage costs (Cafiero et al., 2011). This
seriously limits storage models’ usefulness in studying how price fluctuations are driven by the underlying
shifts in supply and demand, in assessing the respective importance of these supply and demand shocks, and
in using this structural model to run counterfactual and welfare analyses for policy purposes.

In this work, we build and estimate a rich rational expectations storage model with the aim of examining
its empirical validity beyond the ability to fit price dynamics. To do this, we depart from the standard model
set-up estimated so far. Specifically, we first extend the simple storage model to include: (i) a supply response,
(ii) long-run trends in prices and quantities, (iii) a persistent demand shock, and (iv) three supply shocks with
different timings. Next, we show how to exploit the information contained in the joint dynamics of quantity
and prices to identify all the structural parameters of the model. Last, we take our richer storage model to five
time series of the global grains market represented by an aggregate index of the world most important staple
food products.1 We find that our model is able to generate the observed high price autocorrelation and the
transfer of inventories over time explains 42% of it, the rest being explained by the other model features. We
also show that, once fully-specified, the storage model is able to fit quite well the main moments of the global
food market. Importantly, with our econometric strategy that exploits the joint dynamics of price and quantity,
we can empirically assess the overall consistency of the model’s combined extensions while identifying more
formally which ones help to match the moments in the data.

The construction of our model was guided by the following considerations. Estimating a supply and
demand model presents the usual problem of simultaneity bias with equilibrium price and quantity that
are jointly determined. Correct identification in this setting requires accounting for unobservable shifts in
each curve. Considering this, we build on the recent innovation in this literature by Roberts and Schlenker

1These are maize, rice, soybeans, and wheat.
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(2013) who use the storage theory to find an appropriate instrument to estimate supply elasticities in storable
commodity markets. While storage theory inspires their econometric strategy to identify demand and supply
elasticities, they do not develop a storage model consistent with their strategy. In contrast, we introduce in our
model various demand and supply shocks, with heterogeneous timing, guided by the specific timing of events
during the growing season, by the theoretical structure implicit behind Roberts and Schlenker’s instrumental
variable estimation approach and by the moments in the data.

Despite the richness of our model compared to most models in the storage literature, it remains quite
stylized, and particularly compared to the number of observables. More precisely, with only four shocks
driving the fluctuations of five observables, the model presents a stochastic singularity. This is an obstacle
to a likelihood-based estimation since, by construction, the model could not be expected to account for the
richness of the data. A classical solution to this issue would consist in adding measurement errors to the
observables. However, this paper being the first structural estimation of a rich storage model, we prefer to
analyze its empirical performance more transparently. Instead, to deal with the stochastic singularity, we
adopt an estimation approach that can be applied despite it, which allows us to choose the dimensions of the
data to match, and which remains fully transparent with respect to the factors driving the estimation. This
approach is the indirect inference proposed in Gourieroux et al. (1993) and Smith (1993). It is a simulated
moment-based method in which the model is estimated by targeting parameter estimates from an auxiliary
model. Put simply, indirect inference is based on the use of an auxiliary model as a statistical model which
provides a rich description of the features in the data. This auxiliary model, which here is the supply and
demand model of Roberts and Schlenker (2013), is estimated on both the true data and on simulated data from
the structural model, and the structural model parameters are adjusted to minimize the distance between both
sets of estimates from the auxiliary model. This approach allows us to exploit an econometric literature where
intuitions about which moment is driving a parameter estimation are more explicit than full-information
techniques. Also interesting with this approach is that it can be applied in the absence of information about
stocks which are generally not available or too noisy to be of use.

We apply this indirect inference approach on the data used by Roberts and Schlenker (2013), which
includes five observed variables: price, expected price, demand, production, and yield shock. This allows
us to estimate all the parameters of the model. Using these estimates, we present four sets of results. First,
a credible solution to the autocorrelation puzzle can be found by accounting for sufficient features of the
international grains market. Using our benchmark estimations, we show that 42% of the observed one-year
autocorrelation can be explained by storage, a third by a long-run trend in prices, 20% by autocorrelated
demand shocks, and the final 5% by the shocks on supply.

Second, we evaluate the ability of our extended storage model to capture the empirical time series
properties of both price and quantity data. We assess the performance of the estimated storage model by
comparing the covariances based on model simulations and those based on observations. Generally, the
covariances are similar for simulations and observations, suggesting that the model is able to mimic the main
moments in the data. Interestingly, our results raise a new puzzle: the model proves unable to match the
correlations between price and quantities, consumption as well as production, which are much lower in the
data than in the model.
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Third, we use the estimated model to analyze the sources of commodity price movements in the global
market of grains. In this respect, we show that for these commodities supply shocks are the main drivers of
market dynamics with an aggregated standard deviation 30% larger than for the aggregate demand shocks.
However, over the past six decades, all price spikes have been associated with large positive demand shocks.

Fourth, we revisit Wright and Williams’s (1984) study of the welfare effects of the introduction of storage.
Unlike them and the rest of the literature which use various calibrations in the absence of credible estimations
of the model parameters, our welfare analysis relies on a fully estimated version of the model. We document
substantial distributional effects with a 4% increase in consumer surplus following the introduction of storage.
However, because this change is related mostly to a reduction in the mean price, the corresponding decrease
in the producer profit leads to modest welfare effects overall.

Our work relates to three strands of research. The first strand studies the theoretical and empirical
properties of storage models. Our model builds on earlier studies that introduce similar features separately. For
example, Wright and Williams’s (1982) competitive storage model includes an elastic supply. Autocorrelated
shocks were introduced by Chambers and Bailey (1996), Deaton and Laroque (1996), and Routledge et al.
(2000). Production shocks with different timings have been used in several papers (e.g., Lowry et al., 1987;
Osborne, 2004; Gouel, 2020). Dvir and Rogoff (2014) develop a storage model with trending quantities and
Bobenrieth et al. (2021) introduce a supply trend which in turn generates quantity and price trends. Relative
to this literature, our use of information on both price and quantities enables us to disentangle the effects
of the core storage theory from the set of auxiliary assumptions needed for inference. Indeed, along three
dimensions—the persistence of the demand shock, the supply elasticity, and the size and cross-correlation of
the supply shocks—the dynamics of quantities play a critical role because price data alone cannot identify
any of them.

The second strand is a literature that uses structural vector autoregressions (SVAR) to study commodity
markets. This approach, one of the most popular for the empirical analysis of commodity markets, is used, for
example, to study the role of supply and demand shocks in commodity markets (Kilian, 2009; Carter et al.,
2017; Baumeister and Hamilton, 2019) and the role of speculative storage (Kilian and Murphy, 2014; Cross
et al., 2022). Compared to this SVAR literature, our paper provides one of the first fully structural approach
in the commodity price literature allowing to identify the various shocks in a theoretically consistent way
(another paper doing it with a structural model, but without storage and for the oil market, is Bornstein et al.,
forthcoming) and to analyze the role of speculative storage.

Last, our approach bridges two literatures: the literature on the estimation of storage models and the
literature on the estimation of dynamic stochastic general equilibrium (DSGE) models, which conceptually
and numerically are close to storage models. The estimation of storage models has been so far restricted to
small models too stylized to capture the richness of these markets. This was also the case for DSGE models
up to the contributions of Smets and Wouters (2003, 2007), who show how to build and estimate DSGE
model with rich stochastic structures. We follow Smets and Wouters by adding a rich set of structural shocks
to a storage model. Our estimation approach borrows also from the DSGE literature where indirect inference
is commonly applied.2 In this literature, the auxiliary model is often a SVAR and the estimations depend on

2This paper is not the first to estimate a storage model by indirect inference. Michaelides and Ng (2000) employed this approach
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targeting the impulse responses (e.g., Rotemberg and Woodford, 1997; Christiano et al., 2005; Ruge-Murcia,
2020). In our case, we show that a system of linear equations based on the instrumental variable model in
Roberts and Schlenker (2013) is enough to capture the dynamic relationships of interest (as in Guvenen and
Smith, 2014), including the strong nonlinearities.3 However, a SVAR should also work since Carter et al.
(2017) use this framework to approximate a storage model and Ghanem and Smith (2022) adapted in a SVAR
Roberts and Schlenker’s IV model, which provides the basis for our auxiliary model.

The rest of the paper is as follows. Section 2 describes the storage model. Section 3 presents the
econometric strategy which starts by deriving the instrumental variable approach consistent with the model
followed by the indirect inference approach. The short-sample properties of these estimation approaches
are studied using Monte Carlo simulations in section 4. Section 5 describes the data and gives descriptive
statistics. Section 6 discusses the estimation results and assesses the model fit on moments not included in
the estimation. Based on the model estimated, section 7 analyzes the role of storage in price dynamics and
welfare, and studies the contribution of the various shocks to the market dynamics. Section 8 concludes the
paper.

2 The model

This section presents the storage model to be estimated. Although the storage model is used to explain
short-run dynamics in commodity markets, long-run dynamics can potentially affect short-run incentives and
should not been neglected in the model. Consumption and production of food increase over time due to rising
population numbers, income growth, and technological progress. There is a large literature analyzing the
nature of the long-run trends in commodity prices (see section 5.2). To account for these long-run dynamics,
we allow both the demand and marginal cost functions to have trends, which in turn translate into quantity
and price trends. However, for simulation purposes, the storage model must be a stationary model. Therefore,
we first present the storage model with trends, and second we express it in terms of the detrended variables,
which shows how the trends affect agents’ incentives.

2.1 Nonstationary model

Producers A representative producer makes its production decision and pays for inputs one period before
bringing its output to the market. The production choice represented by the acreage is made in period t and
denoted Ht . The producer decision is affected by two shocks: ηt , a planting-time yield shock, and ωt , a
cost shock. The planting-time yield shock represents the component of yield shock that is observable by the
producer when planting, for example related to the field-conditions during planting, the groundwater level,
and the seasonal weather forecasts. Roberts and Schlenker (2013) take also the example of the soybean rust
which is observable from the previous growing season. The cost shock is also observable by the producer and

in a Monte Carlo comparison of simulation estimators. However, as Michaelides and Ng (2000) followed Deaton and Laroque by
estimating their model only on prices, the various auxiliary models they consider are all based on univariate time-series models.

3Since commodities cannot be consumed before being produced, there is a nonnegativity constraint on inventories. This zero
lower bound on storage introduces an essential nonlinearity which carries through into nonlinearity of the predicted commodity price
series.
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aggregates a variety of shocks, for example related to fertilizers, seeds, labor, and fuel. Realized production
differs from planned production because of an unpredictable harvest-time yield disturbance denoted εt+1. The
shocks are normal with zero mean and no autocorrelation, and their respective variances are σ2

η , σ2
ω , and σ2

ε .
Although in reality, planting-time and harvest-time yield shocks may be correlated, because of the

rational expectations assumption there is no need to introduce in the model a correlation between ηt and
εt+1. If producers are efficient forecasters (in the sense of Nordhaus, 1987), they will account for the existing
correlation and their forecasting errors should be independent of the observables at period t. In other words,
εt+1 can be interpreted as the yield forecast error at planting time, which because of rational expectations
must be uncorrelated to any period-t variable.

We cannot exclude the possibility of a correlation between the two planting-time shocks, ηt and ωt , since
a year with low yield prospects, for example, could be associated also with higher marginal costs to achieve
the same level of production. Therefore, we assume they are correlated with a coefficient ρη ,ω ∈ (−1,1).

The producer’s problem in period t can be written as

max
Ht≥0

β Et
(
Pt+1Ht eηt+εt+1

)
−Γt (Ht)eωt+gpt , (1)

where 0 < β < 1 is the annual discount factor which is assumed to be fixed, Et is the expectation operator
conditional on period t information, Pt+1 is the price, Γt(·) is a nonstationary, differentiable, and convex
production cost function, and gp is the price trend which appears as a production cost trend. The solution to
this problem is given by the following first-order condition

β eηt Et (Pt+1 eεt+1) = Γt
′ (Ht)eωt+gpt . (2)

At each period, the producer rationally plants up to the point where the expected marginal benefit equals the
marginal production cost.

From an econometrics perspective, we assume that only the combined yield shock is observable and that
it is not possible to observe ηt and εt+1 separately. We therefore introduce ψt+1 = ηt +εt+1 as the observable
yield shock. Final production Qt+1 = Ht exp(ψt+1), is also observable in publicly available statistics. Note
that assuming a multiplicative cost shock separable from the other costs implies that this shock can be moved
to the left-hand side of equation (2) where it would play the same role in final production as the planting-time
yield shock, the only difference being that the yield shock is observable with noise ex-post in ψt+1 but not
the cost shock. Since ωt can be moved to the left-hand side, this means it might capture also some incentive
shocks (e.g., because of changes to agricultural and trade policies or because of price changes in competing
crops).

Storers For the storage sector, we assume free entry, competitive behavior, and risk-neutrality. To store an
amount Xt ≥ 0 from period t until t +1 competitive storers incur several costs. They incur an opportunity
cost because they have to buy one period before being able to sell. Following most of the storage literature
(Gustafson, 1958; Steinwender, 2018; Wright and Williams, 1982, 1984), we assume that storers incur a
physical cost of storage proportional to the stored quantity, kP̄tXt , where P̄t is the price on the growth path
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(i.e., in the absence of shocks) and k ≥ 0 is the per-unit physical storage cost expressed as a percentage of
this price. To be compatible with a model that ultimately could be expressed in terms of stationary variables,
the per-unit storage cost must be assumed either to be null (the assumption adopted in Bobenrieth et al.,
2021) or as adopted here to follow the same trend as the price. Finally, following Deaton and Laroque (1992,
1996), we assume that because of deterioration stocks shrink by a proportion δ ∈ [0,1) every period.4 Storage
technologies impose a trade-off between physical storage cost and deterioration. Cold storage in dedicated
facilities could result in almost no shrinkage but high costs, while piling bags under a tarp would involve
limited costs but high shrinkage. Representing both types of costs allows to estimate their share in global
storage costs.

Under this structure of costs and the assumption of rational expectations, the representative storer
maximizes its expected profit,

max
Xt≥0

Et {[β (1−δ )Pt+1 −Pt − kP̄t ]Xt} , (3)

which taking account of the non-negativity constraint on storage yields the following arbitrage condition

β (1−δ )Et Pt+1 −Pt − kP̄t ≤ 0, = 0 if Xt > 0. (4)

When the expected price is too low to cover the purchase and storage costs (i.e., β (1−δ )Et Pt+1 ≤ Pt + kP̄t),
no stocks are held. Conversely, when the expected price covers the purchase and storage costs, stocks are
acquired up to the level where the expected marginal profit is null: β (1−δ )Et Pt+1 = Pt +kP̄t , which involves
an intertemporal relationship between current and expected prices.

Total marginal storage costs equal kP̄t − [β (1−δ )−1]Pt+1, which shows that a key difference between
per-unit storage costs and the two other costs lies in the fact that opportunity and deterioration are storage
costs that rise with price level.

Final demand Non-speculative demand for commodities can be affected by a variety of shocks: income,
policy (e.g., public support for biofuels), and preference shocks (see e.g. Carter et al., 2011; Chen et al.,
2010; Gilbert, 1989). For parsimony, we gather these different shocks in one demand shock µt , and since
such shocks are likely to be persistent, we assume µt to be autocorrelated. Final demand for the good is the
product of a downward sloping demand function Dt(Pt) with a demand shock, exp(µt), where µt follows a

4We do not consider the possibility of an upper bound on storage capacities (Oglend and Kleppe, 2017) because, contrary to oil
and gas, grains can be stored outside dedicated facilities. In addition, we follow the tradition of Wright and Williams and Deaton and
Laroque assuming away also any kind of negative (nonlinear) storage cost related to the concept of “convenience yield”. The latter
refers to the value of having stocks close at hand in spite of a seeming loss i.e. at a spread between expected and current prices below
the full carrying costs (Kaldor, 1939; Working, 1949; Brennan, 1958). See Williams (1986) for an extensive treatment of this concept
and why it is only relevant if one is interested in understanding the futures market behavior. Here, our focus is on the role of storage
in mitigating the effects of aggregate supply and demand disturbances and the occurrence of upward peaks when inventories are
running low. Put simply, the basic storage theory assumes that there exists a storage level threshold at or below which prices can
spike. Thus, it does not really matter if the observed level of inventories is always positive in aggregate. Indeed, there are always
stocks in-transit, held in strategic reserves or owned for purposes other than the simple economics of speculative storage described by
the arbitrage equation (4).
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first-order autoregressive process with autocorrelation ρµ ∈ [0,1) and innovation υ ∼ N
(
0,σ2

υ

)
:

µt+1 = ρµ µt +υt+1. (5)

Equilibrium The market clears when the sum of previous remaining stocks and production equals the final
demand for immediate consumption plus the speculative demand for stocks:

(1−δ )Xt−1 +Ht−1 eηt−1+εt = Dt (Pt)eµt +Xt . (6)

2.2 Stationary model

Detrended variables and functions are denoted in lower case and relate to their trending counterparts based
on the following relations

Pt+1 = pt+1 egpt , (7)

Dt (Pt) = egqt d (pt) , (8)

Γt
′ (Ht) = γ

′ (ht) , (9)

where gq is the assumed rate of growth of quantities. In equation (7), the fact that the price trend in t is
applied to the price in t +1 comes from equation (1), where the price trend enters through the cost to produce
quantities, which in turn will determine the prices in the next period.

For reasons of market equilibrium, all quantities—final consumption, production, and stocks—must share
the same multiplicative trend, so that any discrepancy between the demand and the cost trend will emerge as
a price trend.5 Defining detrended stocks and acreage using Xt = xt exp(gqt) and Ht−1 = ht−1 exp(gqt), we
can replace the trending quantities by their detrended counterparts in the above market clearing equation (6):

(1−δ )xt−1 e−gq +ht−1 eηt−1+εt = d (pt)eµt +xt . (10)

The multiplication of xt−1 by exp(−gq) shows that, on average, stocks have to increase just to keep pace with
the increased production and demand (for gq > 0), so the detrended past stocks are discounted to maintain
them at a level comparable to other detrended quantities.

Similarly, since P̄t+1 = p̄exp(gpt) where p̄ is the deterministic steady-state price, the storage non-arbitrage
equation (4) can be expressed with detrended variables as

β (1−δ )egp Et pt+1 − pt − kp̄ ≤ 0, = 0 if xt > 0. (11)

The presence of exp(gp) in the equation shows that in the stationary model, the price trend is equivalent
to adjusting the opportunity cost of storage. Intuitively, a negative price trend—as empirically found in

5Assigning exclusively the quantity trend to demand and the price trend to cost is done here for analytical convenience. Without
additional information about the drivers of the trends, we have no basis for doing the assignment, so we opted for the approach
requiring the fewest mathematical notations. Given that the econometric analysis is done in deviation from trend, the origin of trends
is irrelevant for the results.
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section 5—raises the opportunity cost because, since prices tend to decrease over time, a higher expected
price is required to maintain the same level of stocks. Associated with the price trend, the condition
gp <− log[β (1−δ )] ensures that inventories are costly and is a necessary condition for the existence of a
stationary rational expectations equilibrium,6 which is always satisfied for decreasing trends.

In equation (10), five variables are predetermined: stocks, acreage, and the three shocks. Four of these
variables are combined in a single state variable, total available supply st , as follows

st ≡ (1−δ )xt−1 e−gq +ht−1 eηt−1+εt . (12)

Applying previous transformations to the equilibrium equations leads to the following system of three
stationary equilibrium equations associated with three equilibrium variables:

ht : β eηt−ωt Et (pt+1 eεt+1) = γ
′ (ht) , (13)

xt : β (1−δ )egp Et pt+1 − pt − kp̄ ≤ 0, = 0 if xt > 0, (14)

pt : st = xt +d (pt)eµt . (15)

It can be seen that, in the stationary model, while the price trend is equivalent to a change in the opportunity
cost of storage, the quantity trend does not directly affect the incentives. However, it affects them indirectly
through its scaling of past stocks in equation (12). One unit of stocks is less valuable with a positive quantity
trend than the same unit without any quantity trend. So a positive quantity trend is equivalent to an increase
in the opportunity cost of storage, albeit a one harder to quantify than that coming from the price trend.

2.3 Functional forms

For consistency with Roberts and Schlenker’s framework and for simplicity, we assume that the stationary
demand function takes an isoelastic form such that

d (pt) = d̄
(

pt

p̄

)αD

, (16)

where d̄ is the deterministic steady-state demand (equal also to steady-state production since stocks are not
held at the deterministic steady state), and αD < 0 is the price elasticity of demand. Similarly, the stationary
marginal cost function is assumed to be isoelastic:

γ
′ (ht) = β p̄

(
ht

d̄

)1/αS

, (17)

where αS > 0 is the supply elasticity. Because of the assumed specifications with variables expressed relative
to the deterministic steady state, these demand and marginal cost functions depend only on parameters that
can be interpreted directly.

6It corresponds to the assumption 2 of Deaton and Laroque (1992).
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Under these assumptions, the four model equations can be expressed as

st

d̄
= (1−δ )

xt−1

d̄
e−gq +

ht−1

d̄
eηt−1+εt , (18)

ht

d̄
=

[
eηt−ωt Et

(
pt+1

p̄
eεt+1

)]αS

, (19)

β (1−δ )egp Et

(
pt+1

p̄

)
− pt

p̄
− k ≤ 0, = 0 if

xt

d̄
> 0, (20)

st

d̄
=

xt

d̄
+

(
pt

p̄

)αD

eµt . (21)

From these equations, we see that the only effect of the deterministic steady-state quantity (d̄) and price ( p̄) is
that they scale the mean value of the variables. Once normalized by their mean, all model moments should be
identical whatever the choice of these parameters.

Note that these assumed functional forms and the stochastic assumptions imply E[d−1(d̄ exp(ψ −µ))]<

∞, which rules out bubble models such as Bobenrieth et al. (2002).

2.4 Model solution

Equations (5) and (18)–(21) represent a nonlinear rational expectations system based on the exogenous state
variable µt , the endogenous state variable st , and the response variables ht , xt , and pt driven by the innovations
{ηt ,ωt ,εt ,υt}. This system does not have a closed form solution and must be solved numerically to allow for
a structural estimation. The solution to the rational expectations system takes the form of policy functions
which describe the control variables as functions of the contemporaneous state variables. Different definitions
of the state space can be employed. Given that for the numerical solution we use a projection method, it is
important for speed and precision to reduce if possible the number of state variables. So far only some of the
predetermined variables have been combined in the availability, but a further reduction in the dimensionality
of the problem can be achieved.

Instead of working with the acreage ht , we can work with qe
t+1 = Et qt+1 exp(−σ2

ε /2) = ht exp(ηt), which
is the expected production corrected for the mean harvest-time shock and which is given by

qe
t+1 = d̄ eηt

[
eηt−ωt Et

(
pt+1

p̄
eεt+1

)]αS

. (22)

In this case, the transition equation is defined as

st+1 = (1−δ )xt e−gq +qe
t+1 eεt+1 . (23)

We combine the two planting-time shocks that appear in equation (22) to form the aggregate planting-time
shock ϕt ≡ (1+αS)ηt −αSωt . ϕt summarizes the effective planting-time shocks, is observable by the
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producer, and allows for a further simplification of the supply equation:

qe
t+1 = d̄ eϕt

[
Et

(
pt+1

p̄
eεt+1

)]αS

. (24)

We can see also that in the absence of demand for stock, the market clearing equation (15) collapses
to st = d(pt)eµt . This simplification implies that, in this situation, the availability and the demand shock
can be combined into a variable that we define as net availability, s̃t ≡ st e−µt , i.e., availability in the market
corrected for the demand shock.

From the above, we see that it is possible to reduce the number of state variables to 3 by replacing ηt and
ωt by ϕt . We also substitute the availability by the net availability, therefore we define the policy functions on
the set of state variables {s̃t ,ϕt ,µt}:

qe
t+1/d̄ = Q (s̃t ,ϕt ,µt) , (25)

xt/d̄ = X (s̃t ,ϕt ,µt) , (26)

pt/ p̄ = P (s̃t ,ϕt ,µt) . (27)

To simplify the succeeding expressions, the policy functions are expressed as the variables divided by the
steady-state values. Combining the equations defining the model shows that the policy functions for all
{s̃t ,ϕt ,µt} have to satisfy:

P (s̃t ,ϕt ,µt) = max
{(

s̃t/d̄
)1/αD ,

β (1−δ )egp Et
[
P

([
(1−δ )X (s̃t ,ϕt ,µt)e−gq +Q (s̃t ,ϕt ,µt)eεt+1

]
e−µt+1 ,ϕt+1,µt+1

)]
− k,

}
, (28)

eϕt
{

Et
[
P

([
(1−δ )X (s̃t ,ϕt ,µt)e−gq +Q (s̃t ,ϕt ,µt)eεt+1

]
e−µt+1 ,ϕt+1,µt+1

)
eεt+1

]}αS

= Q (s̃t ,ϕt ,µt) . (29)

Equation (28) reveals that two regimes exist. The first regime holds when speculators stockpile in the
expectation of future prices covering the full carrying and purchasing costs. The second regime refers to the
stockout situation with empty inventories, where the market price is determined only by the final demand for
consumption. In the absence of stocks, the equation collapses to P(s̃t ,ϕt ,µt) = (s̃t/d̄)1/αD , which shows
that in this case the only relevant state variable for price determination is net availability. However, the other
two state variables determine the production level given that production is based on forward-looking behavior
affected by shocks observable at planting time. In other words, unlike in a model where there is a single i.i.d.
shock driving all the commodity price fluctuations, the threshold price above which there is no storage is no
longer constant and depends on the demand and planting-time supply shocks.

This model has no closed-form solution which means its solution must be approximated numerically.
Cafiero et al. (2011) show that the precision of the numerical solution is important in the context of estimating
a storage model involving simulations; lack of precision could bias the estimates. Thus, we need to balance
the need for a solution that is both precise and fast, because the model must be solved at each iteration of the
estimation procedure. In Appendix, section A, we propose a new solution method to the storage model based
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on recent developments in the literature (Maliar and Maliar, 2014) which satisfies this trade-off.

3 Econometric procedure

Not all of the storage model variables are observable. For example, stock levels are available from the
United States Department of Agriculture (USDA) statistics but for many countries they are based on USDA
estimates in the absence of official statistics, and so are likely to be affected by measurement errors.7 In
this paper, we use the five observable variables proposed by Roberts and Schlenker (2013): price, expected
price, consumption, production, and yield shock: [pt ,Et pt+1,ct ,qt ,ψt ]. The consumption variable will be
built using information about stock variations. While stock variations can be affected by measurement errors,
those are less important than for stock levels in which errors come from the estimate of initial stock levels
plus the accumulation of errors in past stock variations.

The unknown parameters to be estimated are gathered in the n-vector θ ∈ Θ. Our storage model includes
fifteen parameters, ten of which are estimated in combination. The other five parameters are fixed or are
estimated separately from the procedure described below. As already mentioned, the only role played by
the steady-state quantity and price values is to scale the averages of the model variables, hence without loss
of generality they are fixed to 1. It is well-known that it is difficult to identify the real discount factor, and
especially in short samples involving annual data. Therefore, in structural estimations of storage models it
tends to be kept constant. We fix the annual real interest rate at 2%, the value commonly used in the storage
literature. It is in line also with Barro and Sala-i-Martín (1990) who derive a mean short-term interest rate of
1.87% for the period 1959–89 for nine OECD countries for which historical data are available. Following
the sharp rise to rates of about 5% in the 1980s, the world real interest rate began to decline and reached
an average yearly level of about 2% in the mid 2000s (IMF, 2014, Chapter 3). Annual rates of growth
of quantities and prices, gq and gp, are characterized by the trending behavior of the data (discussed in
section 5.2).

Below, we present two estimation strategies. The first is an instrumental variable approach which is in
line with Roberts and Schlenker (2013) with the difference that we can derive the equations to estimate from
the storage model equations whereas Roberts and Schlenker (2013) had to rely on intuitions from a storage
model to propose their estimation strategy. This approach allows us to estimate directly four parameters
(αS, αD, ρµ , and συ ) but leaves six parameters unidentified. The second strategy is the indirect inference
approach. It relies on the supply and demand model from the instrumental variables approach, which is used
to build an auxiliary model and enables identification of all the parameters.

3.1 Instrumental variables approach

To ease the notations, our instrumental variables approach is presented with stationary variables. However,
the estimations on the observations are based on trending variables. To account for the trends in the variables,

7The measurement error related to USDA stock levels can be large due to frequent data revisions. E.g., in May 2001 and
November 2015, the USDA raised Chinese grain stocks by 164 million tons or by more than 10% of 2001 global production, and
Chinese maize stocks by 23.8 million tons or nearly 2.5% of 2015 global production of maize.
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flexible trends are added to each equation following Roberts and Schlenker (2013).

3.1.1 Production

Expressed in logarithm, the supply equation (19) is

logqt = log(ht−1 eψt ) = log
(
d̄/ p̄αS

)
+αS (ηt−1 −ωt−1)+αS log(Et−1 (pt eεt ))+ψt . (30)

In this equation, ηt−1 −ωt−1 and Et−1(pt eεt ) are not observable. However, it is possible to use the expected
price Et−1 pt to proxy for the true producer price incentives, which leads to the following estimation equation

logqt = aq +bq log(Et−1 pt)+ cqψt +uq,t . (31)

Since the planting-time shocks are present in the residuals, uq,t , and are correlated with the expected price,
an ordinary least square (OLS) estimation would suffer from an omitted variable bias. Therefore, following
Roberts and Schlenker (2013), we instrument the expected price by the lagged yield shocks ψt−1. Under the
model assumptions, lagged yield shocks are a valid instrument because storage implies that past yield shocks
have contemporaneous effects on prices through the availability in the market, and they are not correlated
with the planting-time shocks and thus with the residuals. The first-stage equation is

log(Et−1 pt) = aE p +bE pψt−1 + cE pψt +uE p,t . (32)

This supply-side estimation strategy deserves a few comments. First, substituting the expected price
Et−1 pt for the producer incentive price Et−1 (pt eεt ) could potentially create a bias because the former does
not include the correlation between the harvest-time yield shock and the price. This implies that bq will not
be a consistent estimator of αS with the size of the bias depending on the conditional covariance between pt

and εt . Following the analysis in Gouel (2020, Appendix), this bias is likely to be small for typical parameter
values. The Monte Carlo analysis that follows sheds light on this issue.

Second, though this regression allows us to estimate only the supply elasticity, it provides indirect
information on the other parameters. Specifically, the estimation of cq provides information on a combination
of the other supply parameters. Neglecting the previously mentioned bias and assuming that bq log(Et−1 pt) =

αS log(Et−1 pt eεt ), we can write

logqt −bq log(Et−1 pt) = aq + cqψt +uq,t = log
(
d̄/ p̄αS

)
+αS (ηt−1 −ωt−1)+ψt . (33)
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A standard OLS estimator formula gives cq as a function of the model’s parameters:

cq =
cov(logqt −αS log(Et−1 pt) ,ψt)

varψt
(34)

=
cov(αS (ηt−1 −ωt−1)+ψt ,ψt)

varψt
(35)

= 1+αSση

ση −ρη ,ωσω

σ2
ψ

. (36)

This (omitted variable bias) formula implies that, if ρη ,ω ≥ 0, then cq ≤ 1+αSσ2
η/σ2

ψ ≤ 1+αS. It turns out
that cq can exceed 1+αS only if ρη ,ω < 0, an implication that will be useful later to make the link between
the 2SLS and the indirect inference estimates.

Similarly, the residuals can be used to obtain a measure of the total supply shock, which we denote ϑ . As
for cq, we can reorganize equation (31) to get

logqt − log
(
d̄/ p̄αS

)
−bq log(Et−1 pt) = cqψt +uq,t = αS (ηt−1 −ωt−1)+ψt = ϑt . (37)

Thus, although cq and uq,t cannot be used to directly identify any structural parameter, they provide informa-
tion when used in the subsequent indirect inference approach.

Third, there could be concerns about the precision of the 2SLS estimation. Instrumenting by past yield
shocks is valid only in the presence of speculative stocks. In their absence, prices are not intertemporally
linked, and past yield shocks have no influence on current prices so are not a valid instrument. As long as
stockouts are occasional, this do not threaten the validity of the instrument, because lagged yields remain
correlated with the expected price, but the more frequent the stockouts the lower the correlation. Hendricks
et al. (2015) note also that the observable yield shock ψt is likely correlated with the planting-time shocks,
ηt−1 and ωt−1 (by construction in our model), and hence including it as a control variable mitigates the
omitted variable bias. In this context, there is a tradeoff between the consistency of a 2SLS estimate and the
higher precision of an OLS estimate. Based on our structural model and the Monte Carlo experiment, we
contribute to this debate on whether instrumental variables are actually useful for estimating supply elasticity.

Fourth, although the exclusion restriction holds under the model assumptions, it may not hold in reality.
One concern arises if yields are serially correlated. As shown in section 5.3, they display little autocorrelation.
To address other concerns regarding the endogeneity of yields, Roberts and Schlenker (2013) replace yield
shocks with weather variables, for which endogeneity is less of a concern, and find similar but not as
significant results, because weather variables are weaker instruments.

3.1.2 Consumption

From equation (16), logged consumption (denoted ct), is given by

logct = log(d (pt)eµt ) = log
(
d̄/p̄αD

)
+αD log pt +µt . (38)
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By calculating logct −ρµ logct−1 and using equation (5), we can recover the innovation υt in the demand
equation:

logct =
(
1−ρµ

)
log

(
d̄/ p̄αD

)
+αD log pt −αDρµ log pt−1 +ρµ logct−1 +υt . (39)

The fact that υt is unobservable but correlated with pt implies that an OLS estimation of equation (39)
would again lead to an omitted variable bias. We solve this by instrumenting prices with the yield shocks.
Thus, the estimation equation is

logct = ac +bc log pt + cc log pt−1 +dc logct−1 +uc,t , (40)

with the associated first stage

log pt = ap +bpψt + cp log pt−1 +dp logct−1 +up,t . (41)

Note that this approach identifies all the demand-side parameters: αD and ρµ in the equation, and συ as
the standard deviation of the residuals, uc,t . This approach differs slightly from that in Roberts and Schlenker
(2013) where equation (38) is estimated directly using

log pt = ap +bpψt +up,t (42)

as first stage, since Roberts and Schlenker’s focus is on the demand elasticity and not the other parameters.
These two approaches are asymptotically equivalent in terms of estimating the demand elasticity.

Since equation (40) includes a lagged dependent variable, a condition for dc to be consistently estimated
is the absence of serial correlation in the residuals, which will be tested using the test proposed by Cumby
and Huizinga (1992) which is valid for models that have endogenous regressors. Even in the absence of
serial correlation in the residuals, standard estimators of autoregressive models are biased in finite sample.
We correct for the finite sample bias using Orcutt and Winokur’s (1969) formula: ρ̂µ = (1+T d̂c)/(T −3),
where T is the sample length.

3.2 Indirect inference approach

Indirect inference requires selection of an auxiliary model. Here, we use the supply and demand model
presented above, with some adjustments. The auxiliary model consists of the following system of equations:

logqt = aq +bq log(Et−1 pt)+ cqψt +uq,t , (43)

log(Et−1 pt) = aE p +bE pψt−1 + cE pψt +uE p,t , (44)

logct = ac +bc log pt + cc log pt−1 +dc logct−1 +uc,t , (45)

log pt = ap +bpψt + cp log pt−1 +dp logct−1 +up,t , (46)

ψt = aψ +uψ,t . (47)
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The model includes both the first and second-stage equations presented previously, and equation (47) which
is included to ensure that the model also fits the standard deviation of yields, an aggregate shock we are able
to observe.

The discussion in the above section might suggest that we should estimate the supply and demand
equations (43) and (45) using 2SLS since this approach would lead to the lowest biases in the elasticities
estimated in the auxiliary model. However, this is not the best option, since use of the indirect inference
means that the supply and demand elasticity estimates will not be equal to bq and bc. The indirect inference
combines the various moments and produces estimates which are the most consistent with the theoretical
structure and the moments. Through the lens of the omitted variable bias formula, the theoretical structure of
the model imposes a clear mapping between bq estimated by OLS and the model parameters (and similarly
for bc). As a result, employing equations estimated using OLS in the auxiliary model provides similar
information to equations estimated using 2SLS, and has the advantage of being more precise, since the
precision of the equations estimated with 2SLS is dependent on the correlation between the endogenous
regressors and the instruments.

Hence, our benchmark auxiliary model is based on the system (43)–(47) estimated by OLS. However,
we retain the first-stage equations in the system because they contain information not provided in the other
equations. For robustness, we also use the supply and demand model estimated by 2SLS as an additional
auxiliary model. See Li (2010) and Guvenen and Smith (2014) for two other papers that rely on linear
equations estimated by OLS as the auxiliary model in an indirect inference setting.8 Using the selected
auxiliary model, we can define the objective using a subset of the model parameters which excludes the
intercepts, since these are informative only about the steady-state values which we normalize to unity:
ζ = [bq,cq,σuq ,bE p,cE p,σuE p ,bc,cc,dc,σuc ,bp,cp,dp,σup ,σuψ

].
This auxiliary model has two important benefits. First, since it involves only linear regressions, it is

trivial to estimate, and avoids the indirect inference procedure being burdened by a computationally costly
auxiliary model. Second, it is quite transparent regarding the relationships between the auxiliary model and
the storage model parameters. bq is asymptotically equal to the supply elasticity plus the omitted variable
bias. From equation (36), cq and similarly σuq are both nonlinear combinations of αS, σε , ση , σω , and ρε,ω .
From Hendricks et al. (2015), cE p is related to the predictability of the yield shocks, and thus to ση . In
equation (45), bc consists of the demand elasticity plus the omitted variable bias which is related to ρµ and συ ,
themselves informed by dc and σuc . In equation (46), cp is linked to the first-order autocorrelation of log p,
which conditional on the other parameters, depends directly on the storage costs δ and k. More precisely,
lower storage costs imply more storage and hence a higher price autocorrelation (Gouel and Legrand, 2017,
Figure 2), and vice versa. In equation (47), σ2

uψ
= σ2

ε +σ2
η . Finally, the inclusion of σuE p and σup is almost

equivalent to including the standard deviations of the price and the expected price in the objective, and ensures
that the estimated model will also fit these targets.

We use ζT to denote the 15×1 vector of the auxiliary model estimates from the observations of length
T +1, while ζ i

T (θ) denotes the counterpart of ζT estimated on artificial data generated by the storage model
for a given set of parameters θ . We simulate τ ≥ 1 samples of size T + 1+ tburn. The first tburn = 50

8See also Simonovska and Waugh (2014) for an estimation approach in which a biased auxiliary model is used to obtain an
unbiased simulated estimator.

16



simulations are dropped as burn-in periods to remove the influence of the initial state. The final T + 1
simulations are used for the estimations, but the first is dropped due to the lagged variables appearing in the
auxiliary model. The indirect inference estimator then is

θ̂ = argmin
θ∈Θ

[
ζ̂T − 1

τ

τ

∑
i=1

ζ̂
i
T (θ)

]′

W

[
ζ̂T − 1

τ

τ

∑
i=1

ζ̂
i
T (θ)

]
, (48)

where W is a 15× 15 symmetric nonnegative definite weighting matrix. This estimator minimizes the
weighted distance between the auxiliary model parameters estimated using actual data, and those estimated
using data simulated from our structural storage model.

At every step of the minimization, a new set of parameters θ is proposed. For this new θ , a numerical
solution of the storage model is computed using the algorithm proposed in Appendix A.1. The resulting
policy functions are used to simulate the model starting from the deterministic steady state and using random
shocks drawn at the beginning of the estimation procedure and kept fixed throughout.

In line with Gourieroux et al. (1993), and assuming that W is the optimal weighting matrix, the variance-
covariance matrix for the parameter estimates converges asymptotically to(

1+
1
τ

)(
J′WJ

)−1
, (49)

where J = (1/τ)∑
τ
i=1 E[∂ ζ̂ i

T (θ)/∂θ ] is a 15×n full rank matrix, evaluated by central difference at θ = θ̂ .
The optimal weighting matrix is the inverse of the variance-covariance matrix of the estimate of ζT . We
calculate this using the formulas for standard errors robust to heteroskedasticity for the standard regression
parameters (bq,cq,bE p,cE p,bc,cc,dc,bp,cp,dp), and using the following formulas for the standard deviations
(σuq , σuE p , σuc , σup , σuψ

):

var
(
σ

OLS)= (
σOLS

)2

2(T − l)
and var

(
σ

2SLS)= (
σ2SLS

)2

2(T − l)R2
p
, (50)

where T − l is the degree of freedom of the corresponding regression, and in the case of the residuals from
the second stage of the 2SLS, R2

p is the partial R2 from the first stage where the endogenous variables and the
instruments have both been regressed on the exogenous variables in a first step (Bound et al., 1995). This
gives a diagonal weighting matrix, a common simplification in the indirect inference literature (see, e.g.,
Christiano et al., 2005; Ruge-Murcia, 2020).

There are more parameters included in the auxiliary model than parameters to be estimated in the storage
model which means that there are overidentification restrictions, which will be tested using the statistics

T τ

1+ τ
min
θ∈Θ

[
ζ̂T − 1

τ

τ

∑
i=1

ζ̂
i
T (θ)

]′

W

[
ζ̂T − 1

τ

τ

∑
i=1

ζ̂
i
T (θ)

]
, (51)

which follows asymptotically a χ2 distribution with 15−n degrees of freedom (Gourieroux et al., 1993).
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Since it is costly to evaluate the objective in equation (48), because it requires a new solution and
additional simulations of the storage model for each updated set of parameters, and in the absence of
analytical derivatives, we employ for minimization a derivative-free algorithm, BOBYQA (Powell, 2009).
We also use bounds to avoid exploration of parameter values outside their domain of definition but also those
that would make it difficult to solve the model (see table A2). Furthermore, to limit the risk of finding only a
local optimum, the optimization algorithm starts from 500 different initial values of θ , with the exception of
the Monte Carlo experiments in the next section which uses a unique starting point. Finally, although it is
costly to solve for the rational expectations equilibrium of the model, it is less costly to simulate from it. We
therefore choose τ = 200 to minimize the simulation-related uncertainty in the estimates.

4 Monte Carlo experiments

Except for Michaelides and Ng (2000), there is no example of using indirect inference to estimate the storage
model, and this work involved a much simpler storage model than ours, as well as different auxiliary models.
Therefore, in this section we employ a Monte Carlo analysis to study the small-sample properties of this
estimator and gauge the ability of our selected auxiliary model to reveal the true structural parameters. Since
Roberts and Schlenker (2013)’s supply and demand model allows direct estimation of some of the model
parameters and forms the basis of our auxiliary model, we include it in the Monte Carlo analysis.

All the experiments are based on 500 replications and use the sample size T = 56 which corresponds
to the actual length of the observed dataset used for inference thereafter (the results for longer samples are
provided in the Appendix). The model parameters chosen for the experiments are based on the estimates in
section 6, except for σω and δ for which different values are chosen to illustrate some of the difficulties that
can be encountered. The parameter values used are β = 0.98, gq = 2.5%, gp =−2%, ρµ = 0.5, ρη ,ω =−0.4,
ση = 1.5%, σε = 2%, συ = 1.6%, k = 3%, αD =−0.07, and αS = 0.08. Since the cost shock, ω , is a crucial
and unobserved determinant of the omitted variable bias in the supply equation, we run the Monte Carlo
experiments for three values of its standard deviation: σω = {0.05,0.1,0.2}, the latter being close to the value
estimated in section 6. In section 6, δ is estimated to be zero, but we use here δ = 2% in order to test whether
our estimation strategy can estimate precisely both types of storage cost. For these parameters, the proportion
of stockouts is 17%, which indicates a setting with regular price spikes and important nonlinearities.9 For the
indirect inference, the optimization for each replication starts from a different vector θ with values drawn
randomly from continuous uniform distributions defined over the intervals extending 20% below and above
the true values.

The results of the OLS and 2SLS approaches are reported in table 1 panels A and B, and the results for the
indirect inference approach with an auxiliary model based only on OLS regressions are presented in table 2.
The results for the longer samples and the indirect inference based on 2SLS regressions for the auxiliary
model are contained in Appendix tables A3–A5. These tables show that, for the parameters that are common
to both methods, the indirect inference approach is more precise than either the OLS or 2SLS approaches, as

9Since the solution method involves linear interpolation over a sparse grid, it cannot precisely identify stockouts, in the sense
that instead of zero stocks very small values will be predicted. So, a stockout is defined here as a stock level below 1E-4 which
corresponds to 0.1% of the average demand.
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evidenced by the lower root mean squared errors (RMSEs) obtained in either small or large samples. Note
also that estimates of the demand and supply elasticities exploiting the indirect inference approach are not
biased in either the small or the large samples which contrasts with the OLS estimates on which they are
based.10 This confirms that in the context of indirect inference the elasticities are not just set equal to their
OLS counterparts. More precisely, the approach relies on the information derived from bOLS

c and cOLS
q in

combination with the other parameters, and delivers unbiased and consistent elasticity estimates.11

Nevertheless, using the indirect inference approach, three parameters are difficult to estimate: the storage
costs (δ and k), and the correlation between the planting-time shocks (ρη ,ω ). For the storage costs, one
difficulty comes from the inability of indirect inference to estimate separately δ from k. Both storage costs
are identified from the same moments (a point proved on estimations made on observations in section 6.4),
making their separate estimation challenging. If we consider instead the total storage at the deterministic
steady state (excluding opportunity costs), k+δ , then the RMSE is much lower at 55%. Although still high,
this value is similar to what is obtained in a Monte Carlo experiment with parameters δ = 0 and k = 5%
(in which case all values are close to those in table 2 except for k with mean 5.07%, standard deviation
2.68%, RMSE 53.70%, and asymptotic standard error 1.91%). The limited precision of the estimation of
total storage costs could stem from the fact that they are identified only indirectly, in part through their effect
on the autocorrelation and volatility of prices. The full information approaches in Cafiero et al. (2015) and
Gouel and Legrand (2017) provide lower RMSE for their storage cost parameter. However, in our context
these approaches are not feasible given that they require observability of the planting-time shocks.

The parameter ρη ,ω is estimated based on its effect on the auxiliary parameter cOLS
q (see equation (36)).

However, what matters for estimating ρη ,ω is cOLS
q −1 = αSση(ση −ρη ,ωσω)/σ2

ψ and this is not precisely
estimated in the auxiliary model (table 1). The estimates of ρη ,ω will be affected not only by the uncertainty
related to the estimates of cOLS

q −1, but also by the uncertainty related to the other parameter estimates which
explains its high RMSE. However, the challenges related to estimating ρη ,ω are of secondary importance.
In section 2.4, this parameter is absent from the rational expectations problem expressed in compact form.
The equilibrium price, expected price, demand, and production depend not on the specific value of the shock
ω but rather on the aggregate shock ϕ . In a Monte Carlo experimental setting, it is possible to calculate
the RMSE for σϕ . At 18%—for σω = 20%—this is similar to the RMSE for the other shocks. Overall, the
empirical method seems to be appropriate for estimating the volatility of all the shocks, but the various errors
will be compounded in ρη ,ω which is difficult to estimate, although without consequences for the rest of the
model.

Tables 1–2 and A3–A5 show that both approaches have good asymptotic properties. The RMSE and their
two components vanish “asymptotically”—i.e., as the sample length increases from 56, to 100, 200, and
1000—showing the consistency of both estimators (apart from a small bias in the supply elasticity discussed
above).

The standard errors (rows SE in table 1 and asymptotic standard errors (ASE) in table 2) are similar to

10In the case of the supply elasticity, the inconsistency caused by using the expected price to substitute for the true incentive price
can be evaluated employing an OLS regression to estimate equation (30) where Et−1(pt exp(εt)) is replaced by Et−1 pt . At −1.7%,
this bias is small under these parameters.

11This also applies in the case of an auxiliary model based on 2SLS regressions (see table A5).
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Table 1: Monte Carlo experiment with OLS and 2SLS estimations of the supply and demand equations

ρµ cq −1 σψ (%) σϑ (%) συ (%) αD αS

Panel A. OLS
σω = 5%
Mean 0.36 0.049 2.49 2.64 1.28 −0.021 0.067
St. dev. 0.13 0.023 0.23 0.25 0.14 0.011 0.005
RMSE (%) 37.93 43.240 9.40 9.65 21.70 71.702 17.712
SE 0.14 0.024 0.24 0.13 0.011 0.005
σω = 10%
Mean 0.37 0.065 2.49 2.75 1.29 −0.022 0.053
St. dev. 0.13 0.043 0.23 0.27 0.14 0.011 0.009
RMSE (%) 36.57 55.737 9.40 10.37 20.97 69.774 35.730
SE 0.14 0.045 0.24 0.13 0.011 0.009
σω = 20%
Mean 0.39 0.077 2.49 3.00 1.33 −0.026 0.018
St. dev. 0.13 0.078 0.23 0.31 0.14 0.010 0.015
RMSE (%) 33.51 72.009 9.40 14.01 19.25 65.089 79.423
SE 0.13 0.083 0.24 0.13 0.010 0.014

Panel B. 2SLS
σω =5%, {Supply: E(F) =14, E(p-value) =0.34}, {Demand: E(F) =24, E(p-value) =0.00}
Mean 0.50 0.069 2.49 2.70 1.65 −0.072 0.080
St. dev. 0.18 0.032 0.23 0.26 0.35 0.024 0.015
RMSE (%) 36.02 47.704 9.40 9.76 21.92 34.804 18.332
SE 0.19 0.035 0.24 0.28 0.021 0.016
σω =10%, {Supply: E(F) =14, E(p-value) =0.28}, {Demand: E(F) =23, E(p-value) =0.01}
Mean 0.49 0.111 2.49 2.90 1.64 −0.072 0.082
St. dev. 0.18 0.064 0.23 0.32 0.34 0.024 0.028
RMSE (%) 35.17 60.495 9.40 11.05 21.61 34.299 35.253
SE 0.19 0.069 0.24 0.28 0.021 0.029
σω =20%, {Supply: E(F) =12, E(p-value) =0.17}, {Demand: E(F) =22, E(p-value) =0.02}
Mean 0.49 0.202 2.49 3.46 1.65 −0.072 0.089
St. dev. 0.17 0.147 0.23 0.69 0.34 0.024 0.066
RMSE (%) 33.51 81.341 9.40 20.83 21.59 34.297 82.679
SE 0.18 0.154 0.24 0.29 0.022 0.064

Notes: Monte Carlo experiment based on 500 replications, with a sample size T = 56. True values: ρµ = 0.5, σψ = 2.5%,
συ = 1.6%, αD = −0.07, and αS = 0.08. The values of cq and σϑ vary with σω as follows cq = {1.067,1.106,1.182} and
σϑ = {2.70,2.88,3.36} corresponding to σω = {0.05,0.1,0.2}. The mean and standard deviations are respectively the average and
standard deviations of the empirical parameter distribution. They are combined to calculate the RMSE expressed as a percentage of
the true parameter value. SE is standard errors and represents the average of the standard errors robust to heteroskedasticity. E(F) is
the average first-stage F-statistics. E(p-value) is the average p-value for the Hausman test of endogeneity. ρµ in panel B is bias
adjusted (Orcutt and Winokur, 1969)

the standard deviations of the Monte Carlo estimates showing that for both methods the standard errors are
consistent with the standard deviations in the population. The only exception is the storage costs for which
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Table 2: Monte Carlo experiment with indirect inference approach (auxiliary model based on OLS regressions)

ρµ ρη ,ω σω (%) ση (%) σε (%) συ (%) δ (%) k (%) αD αS

σω = 5% OID: 0.043
Mean 0.50 −0.45 5.05 1.47 1.98 1.61 1.97 3.08 −0.071 0.080
St. dev. 0.11 0.31 0.66 0.33 0.28 0.26 1.34 2.27 0.016 0.008
RMSE (%) 22.19 78.65 13.31 22.14 14.13 16.26 67.26 75.82 22.380 9.539
ASE 0.09 0.39 0.67 0.36 0.30 0.26 19.33 18.19 0.020 0.008
σω = 10% OID: 0.049
Mean 0.50 −0.44 10.22 1.46 1.98 1.62 2.00 3.08 −0.071 0.081
St. dev. 0.11 0.29 1.63 0.35 0.29 0.26 1.47 2.26 0.016 0.014
RMSE (%) 22.67 72.08 16.41 23.31 14.54 16.08 73.66 75.45 22.346 17.661
ASE 0.09 0.34 1.56 0.38 0.32 0.26 18.58 17.58 0.020 0.014
σω = 20% OID: 0.038
Mean 0.50 −0.45 21.01 1.46 1.98 1.62 2.00 3.17 −0.072 0.083
St. dev. 0.11 0.28 5.60 0.38 0.31 0.24 1.62 2.28 0.015 0.026
RMSE (%) 22.94 70.52 28.44 25.25 15.53 15.25 81.17 76.20 21.506 32.172
ASE 0.10 0.33 5.23 0.41 0.34 0.26 18.51 17.09 0.020 0.025

Notes: Monte Carlo experiment based on 500 replications, with a sample size T = 56. True values: ρµ = 0.5, ρη ,ω =−0.4, ση =
1.5%, σε = 2%, συ = 1.6%, δ = 2%, k = 3%, αD =−0.07, and αS = 0.08. The mean and standard deviations are respectively the
average and standard deviations of the empirical parameter distribution. They are combined to calculate the RMSE expressed as a
percentage of the true parameter value. ASE means asymptotic standard errors, based on equation (49), and represents the average
standard errors calculated at the solutions. OID is the empirical size of the chi-square test of overidentifiying restrictions.

the asymptotic standard errors are one order of magnitude above the population standard deviations. This
is only true when both storage costs are included in the model. In a model with only per-unit storage costs
(with k = 5%), standard deviations and asymptotic standard errors are similar. The comparability of standard
deviations and standard errors is an important result for two reasons. Reliable auxiliary model standard errors
matter because in the indirect inference approach they directly enter the weighting matrix. Also, consistent
indirect inference standard errors in the Monte Carlo analysis suggests that the asymptotic formula we apply
has a limited small-sample bias (tables A4 and A5 show that with longer samples the biases are negligible).
The empirical size of the OID statistic is close to but below its 5% critical value. This means that this test
statistic is biased against rejecting the model identification restrictions. This problem is exacerbated in longer
samples (table A4).12

We also ran Monte Carlo estimations for gradually increasing sizes of σω to analyze its role in the
parameter estimations. Table 1 panels A and B show that an increase from 5 to 20% in σω affects only the
OLS and 2SLS performances for the supply-side parameters estimates. Varying σω fleshes out the trade-off
between consistency and precision in the supply elasticity estimates highlighted by Hendricks et al. (2015).
What is gained in terms of reduced bias from using 2SLS is lost through higher volatility of the estimates,
resulting in similar but lower RMSE for the OLS compared to the 2SLS. This is because a higher σω implies
a larger omitted variable bias but it also makes the lagged yield shocks a weaker instrument because their role
in explaining price changes declines as the variance of cost shocks increases. For this choice of storage model
parameters, deciding between estimating supply using OLS or 2SLS is difficult given that both approaches
have some limitations. However, in the present context, as documented in table 2, the indirect inference

12This size-distortion issue related to specification tests is acknowledged in the literature (see, e.g., Ruge-Murcia, 2007; Michaelides
and Ng, 2000).
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approach is much more robust to σω with RMSEs which deteriorate less as this parameter increases.
In addition to the Monte Carlo results on the parameters, table 1 displays some results about the 2SLS

diagnostics statistics: the first-stage F-statistics and the p-value for the Hausman test of endogeneity. The
F-statistics show that the instrument is much weaker for the supply equation than for the demand equation
with a mean value closer to 10, and deteriorating with σω . This is consistent with the idea that a lagged yield,
used to instrument the expected price in the supply equation, is a worse predictor of price than current yield is
which is something that will also be found on observations thereafter. The Hausman test shows that the null
of exogenous expected prices is not rejected on average, in a context where we know that these prices are
endogenous and should be instrumented. This result disappears in longer samples (table A3) and is explained
by the important standard errors that the supply elasticity displays in small samples.

Finally, before deciding about the most appropriate auxiliary model, we rely on the Monte Carlo
estimations to investigate the effect of substituting the auxiliary model based on OLS estimates of the demand
and supply equations by the 2SLS estimates. Appendix Table A5 reports the Monte Carlo results using the
parameters estimated by 2SLS. The two indirect inference approaches have similar performance, apart from
αS, συ , and σω which are estimated with much higher precision in the OLS-based model; loss of precision
is associated with the instrumentation. These results support our choice to use the OLS regression based
auxiliary model as the baseline and to use the auxiliary model based on the 2SLS regression as a robustness
check.

5 Overview of the grains market

With some small modifications, our data series is constructed following Roberts and Schlenker (2013) but for
completeness we present all the different choices along with the descriptive statistics.

5.1 Data

The observations include five annual time series—price, expected price, consumption, production, and yield
shock—for a caloric aggregate of the four basic staples: maize, rice, soybeans, and wheat. Information on
quantities come from the Food and Agriculture Organization statistical database (FAO, 2020) with data for
1961–2017 on production, stock variations, yield and area harvested. Consumption is obtained by subtracting
stock variations from total production. Following Roberts and Schlenker (2013), the four commodities are
aggregated into calories using the conversion ratios in Williamson and Williamson (1942).

For country i, crop l, and κl the caloric content of a ton of crop l, the global annual yield shocks Ψt are
computed according to the approach proposed by Hendricks et al. (2015):

Ψt =
∑l ∑i AlitκlYlit

∑l ∑i AlitκlŶlit
= ∑

l
∑

i
ρlitΨlit , (52)
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where Alit is the harvested area, Ylit is the yield, Ŷlit is the trend yield, and

ρlit =
AlitκlŶlit

∑l′ ∑i′ Al′i′tκl′Ŷl′i′t
(53)

is the weight of the country-crop shocks in the aggregate shock. Yields are decomposed multiplicatively
into a trend yield and a yield shock: Ylit = ŶlitΨlit . The trend yield is obtained from the model prediction
regressing the logarithm of yield over 4-knot natural cubic spline with the corresponding observation deleted.
The trend yield model has to be run separately for each country, crop, and year. The prediction is corrected
for the transformation bias introduced by the logarithm using the residual variance of the trend yield model.
All countries are included in the calculation but the smallest contributing less than 0.5% to a crop’s world
production are aggregated.

This data construction implies that the yield shock in the model corresponds to the logarithm of the yield
shock calculated here, ψt = logΨt , and the acreage in the model corresponds in the data to Ht−1 = Qt/Ψt =

∑l ∑i AlitκlŶlit . Following the discussion in Hendricks et al. (2015), this definition has implications for the
interpretation of the supply elasticity as represented in the model. The model supply elasticity combines an
acreage elasticity and an average trend yield effect related to changes in the composition of growing areas
across countries associated with price changes. Hendricks et al. (2015) argue that to avoid this composition
effect the supply elasticity should be estimated based only on acreages. In the present context of a market
model, it is the total supply elasticity that matters since this determines the price.

There are several sources of price information but it is important to choose the prices that are the most
consistent with the model. For example, the annual prices in Deaton and Laroque (1992) are from the World
Bank and are obtained by averaging prices over the calendar year, which can induce spurious correlations due
to mixing different marketing seasons (Guerra et al., 2015). The model includes two prices: the current price
Pt , which is the price received by the farmers at harvest time and paid by consumers, and the expected price
Et−1 Pt , which corresponds to the farmers’ rational expectations at planting time about the price Pt they will
receive at harvest time. Since Gardner (1976), it is common to use futures prices in place of the unobservable
expected price. This is a valid approach if futures prices are unbiased predictor of spot prices, which is not
true for all commodities but is true for the commodity prices studied here according to Chinn and Coibion
(2014).13 Given the annual time-frame of the model, we take futures contracts with a one-year horizon. For
consistency, Pt is the corresponding futures contract at delivery. Following Roberts and Schlenker (2013),
we use prices from the Chicago Board of Trade futures for the main month following each crop harvest
(i.e., December for maize and wheat, November for rice and soybeans).14 Monthly prices are obtained by
averaging the daily prices observed during each month. Futures prices for rice started trading in 1986. Due
to lack of data, we exclude rice from our calculation of the price index (which is in line with Roberts and
Schlenker, 2013). Futures prices are deflated by the US CPI and aggregated into a single caloric price index

13However the lack of convergence for several grain futures have partly altered this property during the period 2005–10 (Garcia
et al., 2015).

14At the beginning of the series, not all futures contracts extended one year in advance. In these cases, we use the average price for
the first month the contract was traded.
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series using the caloric weights, ρlit , derived in equation (53):

Pt =
∑l ̸=rice (∑i ρlit)Plt|t/κl

∑l ̸=rice ∑i ρlit
and Et−1 Pt =

∑l ̸=rice (∑i ρlit)Plt|t−1/κl

∑l ̸=rice ∑i ρlit
, (54)

where Plt|t−n denotes the real crop-l futures price at time t −n for delivery at time t.

5.2 Non-stationarity

Figures 1 and 2 plot the constructed production, consumption, and price series used for inferences thereafter.
In line with the model trend assumptions, these series do not appear stationary. There is a large literature on
the nature of trends in commodity prices which was motivated by the Prebish-Singer hypothesis of a secular
deterioration in primary commodity prices relative to the prices of manufactured goods (e.g., Ghoshray,
2010; Lee et al., 2006). An important take-away from this literature is that, over long periods, it is necessary
to account for possible breaks in deterministic trends to avoid spurious rejection of the assumption of a
deterministic trend.15 We test for stationarity using the endogenous two-break Lagrange Multiplier (LM)
unit root test developed by Lee and Strazicich (2003, 2013) and Lee et al. (2006). The LM tests allow for
one or two structural breaks with or without a linear or quadratic deterministic trend under both the null and
alternative hypotheses.
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Figure 1: World caloric production and consumption, and their trend for 1961–2017. The y-axis is the number
of people that hypothetically could be fed 2,000 kilocalories per day diet based on consumption of only the
four commodities.

15It is well-known that omitting possible structural breaks can lead to a bias resulting in retention of the unit root null hypothesis
when it should be rejected (Perron, 1989; DeJong et al., 1992; Zivot and Andrews, 1992).
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Figure 2: Real caloric prices at delivery. The y-axis is the annual cost of 2,000 kilocalories per day.

Although our econometric models call for variables in logarithms, it is well known that unit root tests
are highly sensitive to data transformation which is likely also to transform the underlying trends (Corradi
and Swanson, 2006). For example, in levels, quantities exhibit a nearly linear trend up to the mid 2000s,
but this is less evident in logarithm. We therefore apply the variable tests in levels (results are reported in
Appendix table A6, panel A). The null of difference stationarity is rejected for all the variables with one break,
two breaks, or in both specifications using the bootstrap critical values given by Lee et al. (2006).16 More
precisely, for production and consumption, the unit root assumption is rejected at the 5% level of significance
with two structural breaks in 1982 and 2000, and 1984 and 2007. Regarding the spot and expected prices,
the two-break LM test with a quadratic trend rejects the null at the 5% level with a single estimated break
occurring in 1979 and 1980.17

These tests support our deterministic trends modeling choice. However, there is a mismatch between
the log-linear trends assumed in the model and the flexibility needed to make the data stationary. This
difference is common in macroeconomic models; a trend consistent with a growth path may not be sufficiently
flexible to stationarize the data. Various solutions to the problem have been explored; all involve tradeoffs
related to consistency between the theoretical and empirical models (see the discussion in Canova, 2014,
and Fernández-Villaverde et al., 2016, Section 8.4).18 In our case, the consequences of this mismatch are
likely to be small for two reasons. First, the quantitative effect of the trend gq on the variables of interest is

16Based on 5,000 replications of sample sizes T = 100.
17It is interesting that if we assume two breaks for prices, the dates correspond to two food crises after which food prices settled at

higher average levels. This applies also to consumption in relation to a regime change in 2007 which followed the implementation of
the biofuels mandates in Europe and the United States (Wright, 2014).

18Bobenrieth et al.’s (2021) storage model present a trend consistent with the data because it is applied to commodities whose
price trend is approximately log-linear and is not mapped to observations about quantities.
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quite limited (see results of table 11 in section 7.1). Second, the deviations from the log-linear trends are
small meaning that the theoretical model accounts well for the first-order effects of trends. So, the variations
around the linear trend captured by our more flexible specification are likely of small quantitative importance.

Since our econometric models use variables in logarithms, we need log-detrended variables. To be
consistent with Roberts and Schlenker’s empirical approach, we adopt their natural cubic spline specification
to model the trend and consider three levels of flexibility, with three to five knots.19 We confirmed the
stationarity of the detrended variables by running the usual augmented Dickey-Fuller (ADF), Phillips-Perron
(PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit root tests. Results are reported in table A6, panel
B, with an increasing degree of flexibility going from the top to the bottom of each column. We find, with
the exception of the variables detrended with three knots, the remainder are stationary at the 1% level of
significance.20 In other words, a natural cubic spline with three knots—i.e., flexibility equivalent to a quadratic
trend—is not sufficiently flexible to make both price and quantity data stationary. Since the four-knot spline
involves the minimum flexibility needed to make the data stationary, this is our preferred trend specification;
as a robustness check we test for more and less flexible trends.

Finally, to simulate the storage model requires trend parameters gq and gp. In contrast to the other
parameters, these are estimated separately and before applying the indirect inference. In the theoretical model,
consumption and production, and the demand and supply prices show common trends respectively denoted
gq and gp. We estimate gq = 2.54% by regressing the logged quantities (consumption and production) on a
common linear trend and similarly with the logged prices to estimate gp =−2.03%.

5.3 Descriptive statistics

In this section we present some descriptive statistics for the detrended data and discuss their implications for
the estimation of the storage model.

Table 3 contains the correlation between the detrended real prices at delivery. It shows that crop prices
are strongly correlated with one another, and all but rice have a correlation with the grains index in excess of
0.88. These high correlations are indicative of the large substitution possibilities between these basic staples.
We observe that with the exception of the correlation between rice and soybeans, crop prices are correlated
more strongly to the grain index than to the prices of any of the other crops. These high correlations support
use of an aggregated caloric index to measure the state of the world grain market. In addition to the issues
involved in solving and estimating a multi-crop storage model, an estimation based on the separate crops
considered would risk mixing own-price and cross-price elasticities.

Table 4 reports the autocorrelations and standard deviations in the data used to estimate the model. The
first-order autocorrelations of spot and futures prices are both greater than 0.57. It was the inability of the
storage model to match these high serial correlation levels in prices for a range of storable commodities that
originally led Deaton and Laroque (1992, 1996) to reject the storage model. Consumption persistence is also
substantial with a first order autocorrelation coefficient of 0.64 which suggests the inclusion in the model of a

19Unless indicated otherwise, when natural cubic splines are used, their knots are located according to the percentiles method
suggested in Harrell (2001): 1967, 1989, 2011 for 3 knots; 1964, 1981, 1997, 2014 for 4 knots; and 1964, 1976, 1989, 2002, 2014
for 5 knots.

20Recall that in the KPSS test the null is a trend-stationary series.
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Table 3: Correlation coefficients of detrended real prices at delivery, 1961–2017 (except rice, 1986–2017)

Commodity Maize Rice Soybeans Wheat

Maize
Rice 0.662
Soybeans 0.858 0.772
Wheat 0.790 0.611 0.776
Grains 0.923 0.688 0.887 0.959

Notes: Prices are detrended using a natural cubic spline using four knots. “Grains” includes the caloric aggregate of maize, soybeans,
and wheat.

persistent demand shock. Production and yield shocks have small and insignificant autocorrelation in line
with our model assumption of supply shocks without serial correlation.

Table 4: Autocorrelation and standard deviation of log detrended caloric data, 1961–2017

One-year Two-year Standard
Variable autocorrelation autocorrelation deviation

Demand price (log(pt)) 0.576 0.167 0.236
Supply price (log(Et pt+1)) 0.652 0.236 0.192
Consumption (log(ct)) 0.642 0.302 0.019
Production (log(qt)) 0.042 −0.095 0.028
Yield shock (ψt) 0.148 0.050 0.023

The pattern of the standard deviations is coherent with a storage model with small elasticities. The
coefficient of variation of quantities is one order of magnitude lower than the coefficient of variation of prices.
Consumption volatility is lower than production volatility, which is consistent with a smoothing by storage
associated with larger supply than demand shocks. Put simply, without storage, yearly changes in production
levels would have to be matched by corresponding variations in consumption levels. The standard deviation
of the yield shock accounts for 82% of that of production, suggesting the importance of these shocks for
the variations in production. Finally, the lower volatility of the expected compared to the spot price is as
predicted and is consistent with the “Samuelson effect”: decreasing futures price volatility based on the
contract horizon.

Table 5 displays the correlation coefficients of all the detrended variables in logarithm. The correlations
with obvious counterparts in the model have the expected signs. Current and expected prices are strongly
correlated, consistent with equation (4) in the presence of inventories frequently held. The fact that production
and consumption are not perfectly correlated is another indication of the role played by storage. The observed
negative correlation between consumption and price suggests that the changes in consumption stem from
movements along the demand curve and from shifts in the demand curve. Were they due only to changes
along the demand curve the correlation would be close to −1.
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Table 5: Correlation coefficients of log detrended caloric data, 1961–2017

Demand price Supply price Consumption Production
Variable (log(pt)) (log(Et pt+1)) (log(ct)) (log(qt))

Demand price (log(pt))
Supply price (log(Et pt+1)) 0.935
Consumption (log(ct)) −0.488 −0.451
Production (log(qt)) −0.406 −0.270 0.395
Yield shock (ψt) −0.532 −0.498 0.527 0.775

6 Estimation

6.1 Structural parameters

Before analyzing the results obtained by indirect inference in section 6.1.2, we report the 2SLS and OLS
estimates of the supply and demand equations. These estimates provide direct values for some parameters
(αD, αS, συ , ρµ , and σϑ ), and indirect information about the others.

6.1.1 Instrumental variable estimations

Supply and demand equations can be estimated on raw trending data. Following Roberts and Schlenker, we
augment all the first and second stage equations with trend variables generated by natural cubic splines with
three to five knots. Tables 6 and 7 present the supply and demand estimates. To enable comparison with
Roberts and Schlenker (2013), we replicate these estimates in Appendix (Tables A7 and A8) for a shorter
sample (1962–2007) which corresponds to the sample length they used. The Appendix tables have some
minor differences with the Table 1 in Roberts and Schlenker. These are due to two deviations from their
approach: a slightly different procedure to construct the yield shock (in line with Hendricks et al., 2015), and
the detrending of yields using a 4-knot spline rather than a 3-knot spline which is more consistent with our
longer sample.

Table 6 reports the estimations of the supply equation. For the 2SLS estimates, the Cumby-Huizinga
test rejects the hypothesis of residuals without serial correlation. We nevertheless report standard errors and
diagnostic tests that are robust only to heteroskedasticity. Not only is this the most conservative choice in
this particular setting but it also allows us to use the same type of standard errors for the supply and demand
equations as well as for the weighting matrix of the indirect inference approach. 2SLS estimates of the supply
elasticity are around 0.08, slightly lower than the values obtained by Roberts and Schlenker (2013). However,
comparison with table A7 shows that the difference is entirely explained by our longer sample. The cq

estimates are always above 1+αS (although not significantly). According to the discussion in section 3.1.1,
this indicates a negative correlation between the two planting-time shocks (η and ω). The estimations using
four and five knots are similar but present small differences with the estimations using three knots which is in
line with the previous stationarity test results. Consistent with Hendricks et al.’s (2015) insights, the OLS
and 2SLS supply elasticity estimates show only small and insignificant differences indicating that using the
yield shock as a control variable helps to mitigate the omitted variable bias. This is further confirmed by the
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Table 6: Supply equation estimation

(1) (2) (3)

Panel A. 2SLS
Supply elasticity bq 0.088∗∗ 0.075∗∗∗ 0.082∗∗∗

(0.038) (0.026) (0.026)
Shock cq 1.153∗∗∗ 1.154∗∗∗ 1.137∗∗∗

(0.194) (0.141) (0.150)
Panel B. First stage
Lagged shock bE p −4.045∗∗∗ −3.783∗∗∗ −3.821∗∗∗

(1.474) (0.991) (0.993)
Shock cE p −2.470 −2.382∗ −2.343∗

(1.927) (1.382) (1.334)
Panel C. OLS
Supply elasticity bq 0.135∗∗∗ 0.058∗∗∗ 0.061∗∗∗

(0.014) (0.013) (0.012)
Shock cq 1.298∗∗∗ 1.103∗∗∗ 1.078∗∗∗

(0.154) (0.099) (0.107)

σu2SLS
q

0.028 0.015 0.015
σϑ 2SLS 0.038 0.031 0.030
σuEP 0.228 0.165 0.166
σuOLS

q
0.026 0.015 0.015

σϑ OLS 0.039 0.030 0.029
First stage F-stat 7.531 14.567 14.811
p-value for Hausman test 0.172 0.414 0.302
p-value for Cumby-Huizinga test (panel A) 0.000 0.004 0.004
Observations 56 56 56
Spline knots 3 4 5

Notes: Standard errors robust to heteroskedasticity in parenthesis. ∗∗∗, ∗∗, and ∗ indicate significance at the 99%, 95%, and 90%
levels, respectively.

Hausman test which fails to reject the null of exogenous expected prices. However, the Monte Carlo analysis
shows that this result was to be expected in such short samples even with endogenous prices. Therefore, we
do not follow the Hausman test and for the comparisons that will follow our benchmark estimate is the 2SLS
with four knots. For this specification, total supply shocks have a standard deviation σϑ equal to 0.031, a
value slightly above the standard deviation of production in table 4.

Table 7 presents the estimation results of the demand equation. The demand elasticity estimates are higher
in absolute values than in Roberts and Schlenker (2013), which again seems to result from using a longer
sample (see table A8). We use equation (40) to estimate both the demand elasticity and autocorrelation of the
demand shock. This contrasts with Roberts and Schlenker (2013) who use equation (38) which identifies
only the demand elasticity. By comparing the results in panels A and D, we see that the estimates do not
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Table 7: Demand equation estimation

(1) (2) (3)

Panel A. 2SLS
Demand elasticity bc −0.051∗ −0.065∗∗ −0.060∗∗

(0.028) (0.026) (0.027)
Lagged price cc 0.041∗∗ 0.019 0.014

(0.016) (0.014) (0.014)
Lagged demand dc 1.054∗∗∗ 0.535∗∗∗ 0.442∗∗

(0.070) (0.159) (0.203)
Panel B. First stage
Shock bp −4.287∗∗∗ −4.112∗∗∗ −4.014∗∗∗

(0.882) (0.937) (1.056)
Lagged price cp 0.569∗∗∗ 0.486∗∗∗ 0.498∗∗∗

(0.087) (0.105) (0.111)
Lagged demand dp 1.446∗ −0.130 0.523

(0.745) (1.690) (2.012)
Panel C. OLS
Demand elasticity bc −0.012 −0.021∗∗ −0.018∗

(0.010) (0.010) (0.010)
Lagged price cc 0.015 −0.005 −0.010

(0.010) (0.011) (0.011)
Lagged demand dc 0.949∗∗∗ 0.547∗∗∗ 0.413∗∗

(0.044) (0.118) (0.162)
Panel D. 2SLS using Roberts and Schlenker’s approach (eqs. (38) for 2nd stage and (42) for 1st)
Demand elasticity bc −0.069 −0.079∗∗∗ −0.066∗∗∗

(0.049) (0.023) (0.023)

σu2SLS
c

0.018 0.016 0.016
σuP 0.180 0.180 0.180
σuOLS

c
0.016 0.014 0.013

σu2SLS, RS
c

0.049 0.020 0.017
σµ2SLS 0.019 0.018
First stage F-stat (panel A) 23.627 19.252 14.443
p-value for Hausman test (panel A) 0.137 0.043 0.054
p-value for Cumby-Huizinga test (panel A) 0.851 0.199 0.057
First stage F-stat (panel D) 16.668 27.501 22.935
p-value for Hausman test (panel D) 0.000 0.029 0.052
p-value for Cumby-Huizinga test (panel D) 0.000 0.014 0.045
Observations 56 56 56
Spline knots 3 4 5

Notes: Standard errors robust to heteroskedasticity in parenthesis, except for panel D where they are also robust to autocorrelation.
The lagged demand estimates in panel A are bias adjusted (Orcutt and Winokur, 1969). ∗∗∗, ∗∗, and ∗ indicate significance at the
99%, 95%, and 90% levels, respectively.
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differ significantly between these two approaches.21 The Cumby-Huizinga test cannot reject the hypothesis
of absence of serial correlation in the residuals for equation (40) (but not for equation (38)), which is a
necessary condition for the consistent estimation of autoregressive terms. Estimates of the autocorrelation of
the demand shocks differ depending on the number of knots. ρµ estimated along with a 3-knot spline is not
statistically different from 1 indicating a non-stationary demand, which confirms the results in section 5.2
which shows that a 3-knot spline is not sufficiently flexible to obtain stationary series. A higher number of
knots reduces ρµ by reducing the autocorrelation in the data, but at 0.53 (0.16) and 0.44 (0.20) for four and
five knots the estimates are similar. The last parameter which can be identified from the demand estimation is
the standard error of the demand shock. Using 4- and 5-knot splines, συ (estimated by σu2SLS

c
) is about 0.016,

which is slightly lower than the volatility of consumption observed in the raw data reported in table 4.
With the exception of the supply equation with three knots all first-stage F-statistics exceed the standard

threshold of 10. For the first-stage of supply, the coefficient of contemporaneous yield shock is negative which
is consistent with a positive supply shock decreasing the prices but barely significant, indicating the limited
predictability of yield shocks. The coefficient of the lagged yield shock is negative and significant because a
lagged positive supply shock increases current availability through its effect on storage and thus depresses
prices. Similarly, the supply shock in the first-stage of the demand equation is significantly negative.

Were the residuals of the demand and supply equations correlated, a more efficient strategy would be a
three-stage least squares (3SLS). For the three degrees of flexibility considered, the correlation between the
residuals is small at 0.16, −0.09, and −0.09. This low correlation means that the 2SLS and 3SLS results
are very similar and thus the latter are not reported here. Since the standard deviation of the residuals of
the supply equation σuq can be expressed as a function of the various supply shocks, the lack of correlation
between the residuals supports our assumption of no correlation between demand innovations υt and supply
shocks.

6.1.2 Indirect inference estimations

We followed Roberts and Schlenker by presenting the instrumental variable results for natural cubic spline
trends with three to five knots. However, both the unit-root tests and the estimates from table 7 suggest that
3-knot spline estimations could be problematic since the trend is not sufficiently flexible to stationarize the
series. Moreover, a 3-knot spline creates numerical problems in the indirect inference approach because
the storage model is difficult to solve for values of ρµ close to 1. Hence, in the following indirect inference
approach, we vary the number of knots only between four and five. The estimation results using the auxiliary
model based on OLS regressions are presented in table 8.

Most parameters are estimated precisely for both trend specifications despite the rather short sample
size.22 The exceptions are the correlation between the planting-time shocks (ρη ,ω ), and to a lesser extent
the per-unit storage cost (k). The fact that ρη ,ω is not precisely estimated is not surprising, given the large

21Monte Carlo simulations (not reported here) show that using equation (40) instead of equation (38) leads to slightly smaller
RMSE, consistent with the fact that more spherical residuals should make the estimator more efficient.

22Since δ is estimated at its lower bound, it is not possible to calculate its standard error, and the model is too costly to optimize to
do it by bootstrap.
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Table 8: Estimation results for the indirect inference approach (auxiliary model based on OLS regressions)

4-knot spline 5-knot spline

Estimate Standard error Estimate Standard error

ρµ 0.702 (0.068) 0.681 (0.079)
ρη ,ω −0.442 (0.307) −0.370 (0.331)
σω 0.188 (0.031) 0.185 (0.030)
ση 0.014 (0.006) 0.014 (0.006)
σε 0.020 (0.005) 0.020 (0.005)
συ 0.019 (0.003) 0.018 (0.003)
δ 0 0
k 0.037 (0.014) 0.034 (0.012)
αD −0.068 (0.019) −0.059 (0.019)
αS 0.086 (0.016) 0.085 (0.016)

σϕ 0.027 (0.005) 0.026 (0.005)
σψ 0.025 (0.002) 0.025 (0.002)
σµ 0.026 (0.005) 0.024 (0.005)
σϑ 0.034 (0.004) 0.033 (0.004)

OID p-value 0.084 0.097

Notes: σϕ =
√

(1+αS)2σ2
η +(αSσω )2 −2ρη ,ω αS(1+αS)ση σω , σψ =

√
σ2

η +σ2
ε , σµ = συ/

√
1−ρ2

µ , and σϑ ≡
√

σ2
ε +σ2

ϕ .
The standard errors of σϕ , σψ , σµ , and σϑ are calculated using the Delta method.

RMSE values obtained in table 2 for the Monte Carlo analysis, and given the lack of precision in table 6 of
the estimates of cq −1 from which ρη ,ω is derived.

The parameters estimated using both methods (i.e., ρµ , συ , αD, αS, and σϑ ), do not differ significantly
across methods but precision is greater with indirect inference as suggested by the Monte Carlo studies.
Although not significantly different from the 2SLS estimates, the indirect inference estimate of ρµ is
sufficiently higher to be a potential concern and could indicate some misspecification of the model on the
demand side. This is confirmed later by the limited fit of some demand-related moments.

The volatility of the cost shock σω is about 19% which is an order of magnitude larger than the estimates
of the other shocks. However, the cost shock has no direct effect on quantities. Making it comparable to
the other shocks requires its multiplication by αS which produces 1.6% with four and five knots that is a
contribution similar to the planting-time yield shock ((1+αS)ση). In the Monte Carlo analysis, such a
large cost shock would make the 2SLS estimation of the supply equation very imprecise because the lagged
yield shock would be a weak instrument, and could also create a wide gap between the OLS and the 2SLS
estimates. This is not fully consistent with the results in table 6 where the OLS and 2SLS estimates are
similar, indicating possible overestimation of σω . The planting-time shocks η and ω can be aggregated in the
shock ϕ . The standard deviation of ϕ exceeds the standard deviation of harvest-time yield shock σε , which
indicates that the majority of supply shocks is known before deciding to produce. Finally, these three supply
shocks can be aggregated together. The last row in table 8 shows that the standard deviation of the resulting
total supply shock ϑ is about 30% larger than the standard deviation of the demand shock, µ .
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Storage costs are estimated to be only composed of per-unit cost without any shrinkage with δ estimated
at its lower bound of 0, which confirms a similar result in Cafiero et al. (2011). However, the Monte Carlo
analysis has shown that while the model is able to recover the average storage cost, it may not be able to
distinguish between per-unit cost and shrinkage. The physical per-unit storage cost (k) is estimated a 3.7%
of the steady-state price with four knots. By combining the opportunity costs related to the interest rate
and the price trend, we obtain an estimated total annual storage cost of around 7.6% at the steady state
(k+1−β (1−δ )egp). Note that estimating the model without a price trend—i.e., by setting gp = 0—barely
changes the parameter estimates apart from the storage cost which increases by 2% which is exactly the
opportunity cost implied by the downward price trend. The cost created by the positive quantity trend also
contributes to higher storage costs but cannot be characterized analytically and so is ignored in this discussion.
Simulations based on a model calibrated on the estimated parameters predict an occurrence of stockouts of
11%.

Overall, these results suggest that our indirect inference approach returns fairly precise parameter
estimates which are reasonably consistent with the 2SLS estimates. Since the differences across trend
specifications are small, all the subsequent analyses are based on the estimation using the 4-knot spline, our
preferred trend specification.

6.2 Inspecting the auxiliary model

The overidentification test cannot reject the model specification at the 5% threshold level, with the caveat that
the test is biased against rejection of the null (according to the Monte Carlo experiment in table 2).23 It is
nonetheless interesting to check also the similarity between the estimates of the auxiliary model parameters
based both on observations and simulations.

Table 9 reports the auxiliary parameters obtained respectively from the actual and the simulated data along
with their standard errors estimated on the observations. Note that the standard errors column corresponds to
the inverse of the square root of the diagonal of the weighting matrix, W . For each parameter we can calculate
a t-statistic of equality of the coefficients and test for consistency of the auxiliary model (Gourieroux et al.,
1993, Appendix 3). Apart from the OLS-estimated parameter, dp from equation (41), we cannot reject the null
of equality between the estimates based on observations and those based on simulations from the structurally
estimated model. Although some parameters differ a lot between the two columns (e.g., bE p or cE p), they are
estimated imprecisely in the auxiliary model, and thus were given a small weight in the objective function
which the indirect inference procedure minimizes.

Although the auxiliary model used here involves only OLS estimations, it is useful to compare also
the fit with the supply and demand elasticities estimated by 2SLS (see lower panel in table 9). For both
elasticities, t-tests would not reject the null hypothesis of no differences between estimates on observations
and on simulations. However, we can note that the model tends to overestimate b2SLS

q and to underestimate
bq estimated by OLS (albeit insignificantly for both). Since the difference between the supply elasticities
estimated by OLS and 2SLS is supposed to increase with σω , this difference could confirm the possible

23The overidentification test is not defined when a parameter is at a bound, so it is calculated by assuming that the model was
estimated with the restriction δ = 0, which implies that the statistics in equation (51) follows a χ2(6).
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Table 9: Coefficients of the OLS auxiliary model: estimation based on
observations versus based on simulations

Observations Model

Coefficient Estimate Standard error Estimate

bq 0.058 0.013 0.048
cq 1.103 0.099 1.148
σuq 0.015 0.001 0.015
bc −0.021 0.010 −0.007
cc −0.005 0.011 0.011
dc 0.547 0.118 0.534
σuc 0.014 0.001 0.014
bE p −2.382 1.382 −1.687
cE p −3.783 0.991 −2.303
σuE p 0.165 0.016 0.160
bp −4.112 0.937 −4.445
cp 0.486 0.105 0.456
dp −0.130 1.690 2.881∗

σup 0.180 0.018 0.180
σuψ

0.023 0.002 0.025

b2SLS
q 0.075 0.021 0.086

b2SLS
c −0.065 0.026 −0.068

Notes: Standard errors robust to heteroskedasticity for the parameters and based on equa-
tion (50) for the standard deviations. The lower panel presents the parameters estimated
by 2SLS not present in the auxiliary model used for the estimation. ∗ indicates significant
difference between the estimates based on observations and those based on simulations at
the 90% level.

overestimation of σω highlighted above.
These results suggest an overall good fit of the auxiliary model between observations and simulations,

with the exception of one demand-side parameter.

6.3 Inspecting the model fit on other moments

We next assess the performance of the estimated storage model by comparing the variances and covariances
based on model simulations and those based on observations (as typically done following the estimation of
DSGE models, e.g., Smets and Wouters, 2003). Recall that so far the empirical performance of estimated
storage models was judged based only on their ability to replicate price-based moments given that only prices
were used for the estimations. By focusing on second-order moments calculated up to one lag for each
of our 5 observables, our empirical setting now allows evaluation of the model fit over 40 moments. The
results of this exercise are presented in table 10 which includes all the moments calculated on the detrended
observations, their standard deviation calculated by bootstrap, the corresponding moments from the simulated
model, and an indication of whether the simulated moment lies within the bootstrap confidence intervals of
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the observed moment. Note that some of these moments were included in the auxiliary model—either directly
(σψ as σuψ

) or indirectly (φln p(1) as cp)—but many others were not and therefore constitute a good test of
the model’s overall quantitative performance. The majority of the moments are similar for observations and
simulations, indicating that our extended storage model is generally able to replicate the main dynamics in
the data. This applies in particular to the first-order autocorrelation of price, the subject of long-standing
debates since Deaton and Laroque (1992).24

However, it can be seen that the storage model fails to match some moments (14 lie outside the 10%
bootstrap confidence interval including 11 outside the 5% confidence interval). These moments mostly relate
to two aspects. Six moments are related to consumption and its (lagged) covariance with current and expected
prices. In particular, the model fit related to the negative correlation between consumption and spot prices is
problematic: cor(ln pt , lnct) =−0.49 on observations but 0.08 on simulations. Logically, given the strong
autocorrelation of both prices and consumption combined with the strong correlation between current and
expected prices, this issue persists with a lag as well as if we consider expected instead of current prices.25 A
similar problem arises for four moments related to production and its (lagged) covariance with current and
expected prices.

The correlation between consumption and price is governed in the model by the demand elasticity and the
relative size of the supply and demand shocks. Indeed, in the absence of demand shocks the correlation would
be −1. The higher the variance of demand shocks, the higher the correlation which can even turn positive for
demand shocks with a sufficiently large variance. The indirect inference estimations lead to higher demand
shock autocorrelation and larger variance of demand shocks compared to those obtained using 2SLS. These
differences between 2SLS and indirect inference could contribute to explaining the difficulty related to fitting
the consumption-price correlation and confirm a likely model misspecification on the demand side.

Similar mechanisms apply to the correlation between production and prices, which is governed by the
supply elasticity and the relative size of demand and supply shocks. Then again, without supply shocks
and a positive supply elasticity, production and prices would be positively correlated as production would
increase with demand shocks. At the other extreme, without demand shocks and an inelastic supply, the
correlation would be negative as supply shocks would depress prices. Hence, the inability to match the
negative correlation between production and price could also come from demand shocks too large relative to
supply shocks, which would be consistent with the previous problem.

6.4 Sensitivity analyses

In this sensitivity analysis, we discuss the role of the auxiliary model, the storage cost, and the data.
Appendix C displays all the tables.

The main results are based on an auxiliary model in which all equations are estimated by OLS, so
involving biased parameters. We now compare with the results obtained when the supply and demand
equations of the auxiliary model are estimated by 2SLS. The latter estimates are available in table A9 in the

24However, this is not surprising since this moment was included in the objective function through the parameter cp.
25It is worth noting that consumption is actually a reconstructed variable based on the difference between production and stock

variations. In other words, part of this mismatch might simply be due to an artifact of the data construction and measurement errors
in the global stock variations.

35



Table 10: Comparison of actual and model-based second-order moments

Moment Observed Standard deviation Simulated

σln p 0.236 0.023 0.262
σlnc 0.019 0.002 0.018
σlnq 0.028 0.002 0.031
σlnE p 0.193 0.018 0.180
σψ 0.024 0.002 0.025
φln p(1) 0.576 0.110 0.559
φlnc(1) 0.642 0.146 0.568
φlnq(1) 0.042 0.140 −0.011
φlnE p(1) 0.652 0.116 0.607
φψ (1) 0.146 0.142 0.001
φln p,lnc(0) −0.488 0.102 0.083∗∗∗

φln p,lnq(0) −0.406 0.103 −0.183∗∗

φln p,lnE p(0) 0.939 0.017 0.871∗∗∗

φln p,ψ (0) −0.534 0.118 −0.454
φlnc,lnq(0) 0.395 0.109 0.590∗

φlnc,lnE p(0) −0.452 0.106 0.283∗∗∗

φlnc,lnψ (0) 0.529 0.116 0.463
φlnq,lnE p(0) −0.271 0.115 −0.025∗∗

φlnq,ψ (0) 0.775 0.050 0.831
φlnE p,ψ (0) −0.500 0.118 −0.292
φln p,lnc(1) −0.469 0.125 0.191∗∗∗

φln p,lnq(1) 0.104 0.156 −0.015
φln p,lnE p(1) 0.643 0.069 0.627
φln p,ψ (1) −0.274 0.142 −0.183
φlnc,ln p(1) −0.326 0.109 0.205∗∗∗

φlnc,lnq(1) 0.184 0.110 0.299
φlnc,lnE p(1) −0.300 0.118 0.181∗∗∗

φlnc,ψ (1) 0.304 0.127 0.187
φlnq,ln p(1) −0.257 0.110 0.216∗∗∗

φlnq,lnc(1) 0.323 0.110 0.352
φlnq,lnE p(1) −0.212 0.116 0.092∗∗

φlnq,ψ (1) 0.067 0.134 −0.143∗

φlnE p,ln p(1) 0.566 0.094 0.534
φlnE p,lnc(1) −0.508 0.116 0.293∗∗∗

φlnE p,lnq(1) 0.070 0.147 0.043
φlnE p,ψ (1) −0.358 0.129 −0.138∗

φlnψ,ln p(1) −0.162 0.108 −0.120
φlnψ,lnc(1) 0.334 0.127 0.123
φlnψ,lnq(1) −0.115 0.122 0.002
φlnψ,lnE p(1) −0.203 0.115 −0.226

Notes: Moments calculated over 100,000 sample observations from the asymptotic distribution sim-
ulated with a storage model calibrated with the indirect inference estimates with a 4-knot spline
from table 8. φ(1) denotes first-order serial correlation and φi, j(l) = cor(it−l , jt) denotes lth-order
correlation between variable i and j. Statistics involving E p refer to Et pt+1, e.g., φln p,lnE p(0) =
cor(ln pt , lnEt pt+1). Standard deviation calculated by bootstrapping the dataset of detrended variables
using 5,000 bootstrap replicas. ∗∗∗, ∗∗, and ∗ indicate that the simulated moment is outside the 99%,
95%, and 90% bootstrap confidence interval (adjusted bootstrap percentile method), respectively.

Appendix. Comparing tables 8 and A9, most of the parameter estimates are not significantly different, but the
elasticities deviate more from the 2SLS benchmark in the case of the auxiliary model estimated by 2SLS.
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Corroborating the Monte Carlo results and the intuition that the moments from 2SLS estimates are noisier,
the indirect inference based on the 2SLS supply and demand equations delivers several estimates that are
much less precise.

Storage costs are challenging to estimate with our approach. The main results conclude on the absence of
shrinkage, but the Monte Carlo analysis shows that the precision of such a conclusion is limited. To assess the
robustness of the results to the type of storage costs, we present in the first column of table A10 the results of
an estimation imposing zero per-unit storage costs (i.e., k = 0) and only shrinkage as in Deaton and Laroque
(1992, 1996). This constraint barely affects any estimate while the shrinkage rate δ is found almost equal
to the per-unit cost. The only difference between the two models is that the unrestricted model presents a
smaller value of the objective (which given equation (51) can be seen in its higher p-value for the OID test).

For the data, we have followed Roberts and Schlenker (2013) and considered the four most important
crops for quantities but excluded rice of the price index because of the short sample of rice price futures. This
could be a concern if the rice market behaves differently from the other markets. To verify this, we estimate
the model on data from which the rice sector has been removed altogether. Similar results are obtained
(table A10) except that all shocks and elasticities are higher in absolute values (albeit not significantly). This
could be explained by the fact that rice consumption and production are more stable than for the other crops,
because of its almost exclusive use for food consumption and its large share of irrigated production which
limits production shocks.

In addition to FAOSTAT, it is possible to obtain almost-global information about quantities from the
USDA. The USDA Production, Supply and Distribution (PSD) database (USDA, 2020) provides information
about a smaller sample of countries, which excludes some countries with minor contribution to the global
food balance. Although it also allows using a longer sample, for comparability with FAOSTAT data, we
maintain the same 1961–2017 sample. 2SLS and indirect inference results with USDA-PSD are available in
table A10. Results based on USDA data are extremely similar to those based on FAOSTAT data whatever the
estimator. One noticeable difference is the more elastic demand. This difference could be due to differences
in stock changes data, which would appear here as a difference in consumption, given that production is less
susceptible to measurement errors. However, this different estimate does not help improve the model fit as
studied in table 10.

We have carried out our estimations on a caloric aggregate following Roberts and Schlenker (2013),
because it provided us with a 2SLS benchmark to compare our indirect inference estimates. However,
aggregating commodities may create bias. In table A11, we present the crop by crop results of 2SLS and
indirect inference estimates for maize, soybeans, and wheat (the sample for rice is too short to obtain reliable
results). At the commodity level, only the elasticities of maize are significant when estimated by 2SLS, but
they are all precisely estimated with indirect inference, except for the demand elasticity of soybeans. Demand
and supply are more elastic (except for the supply of wheat) at the commodity level, consistent with the idea
that these crops are substitutes. The shocks tend also to be much larger since they are no longer smoothed by
the aggregation. The conclusion that supply shocks are larger than demand shocks remain, but with a smaller
difference between them. This could be explained by the fact that at the commodity level a supply shock
for one commodity can become a demand shock for another: for example a bad wheat harvest could create
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increased demand for maize for feed.
Finally, to be transparent regarding the identification, we report Andrews et al.’s (2017) measure of

sensitivity of the estimates to the estimating moments in tables A12 and A13. This measure is calculated as
Λ =−(J′WJ)−1J′W and describes how estimated parameters change with the moments. To normalize this
measure as elasticities of changes in parameters with respect to moments, we display diag(θ̂−1)Λdiag(ζ̂T ),
where diag transforms a vector in a diagonal matrix. Table A12 presents this measure for our benchmark
estimation. It confirms the intuitions about identification laid out in section 3.2, but it also shows that for most
parameters, identification actually comes from a combination of moments. For example, the four moments to
which the supply elasticity is the most sensitive are the three moments associated with the supply equation
(bq, cq, and σuq), with the expected signs, as well as σE p because more volatile expected prices would imply
a lower supply elasticity. Table A13 presents this measure of sensitivity for the estimation without per-unit
storage costs. Comparing the two tables shows that k and δ present very similar sensitivity to the observed
moments which explains the difficulty to estimate them separately.

7 Applications

Having demonstrated that, apart from the demand-related misspecification mentioned above, our rich storage
model shows a reasonable fit with the data of the global grains market, we can use it to address various
questions linked to the role of speculative storage in the formation and behavior of commodity prices in the
world market. In particular, how do the different model components interact with one another and drive the
implied dynamics? What are the relative contributions of the various supply and demand structural shocks
to price and quantity developments in the global grains market? What are the expected welfare effects of
speculative demand for storage? These issues are studied in turn in the succeeding subsections.

7.1 The role of storage in market dynamics

The introduction of many new features in our storage model calls for investigation of their respective
contributions to the price and quantity dynamics generated by the model. In this section, we explore the role
of storage in the movement of prices based on the alternative exclusion of the various model features. For
reasons of space, we restrict the discussion to six moments of interest: price autocorrelation which since
Deaton and Laroque (1992) is the benchmark metric used to assess the performance of the storage model,
price, consumption as well as production volatilities, and the correlation between price and consumption,
and price and production. φln p,lnc(0) and φln p,lnq(0) are of particular interest because in the previous section
we showed that the model struggles to match these moments; thus, it is helpful to examine which model
characteristics is driving their behavior. Table 11 reports the results of this exercise as well as the same
moments calculated for comparison on the raw and detrended data.

Switching off the model features one at a time allows us to quantify their respective contribution to price
persistence. The trend captured by the 4-knot spline explains one third of the 0.87 one-year autocorrelation in
the raw data. Regarding the remaining serial correlation explained by the benchmark model, the simulations
of the various models show that the three features which matter most for this moment are the autocorrelation
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Table 11: Role of model assumptions in price and quantity dynamics

Data or model φln p(1) σln p σlnc σlnq φln p,lnc(0) φln p,lnq(0)

Trending data 0.87 0.46 – – – –
Detrended data 0.58 0.24 0.019 0.028 −0.49 −0.41
1. Benchmark 0.56 0.26 0.018 0.031 0.09 −0.18
2. ρµ = 0 0.38 0.21 0.017 0.029 −0.33 −0.50
3. ρµ = 0,συ = σµ 0.38 0.23 0.022 0.030 −0.04 −0.38
4. αS = 0 0.65 0.30 0.014 0.024 0.12 −0.16
5. gq = 0 0.56 0.26 0.017 0.031 0.08 −0.17
6. gp = 0 0.60 0.24 0.018 0.032 0.19 −0.14
7. k = 0.018 0.60 0.24 0.018 0.032 0.19 −0.14
8. ση = 0 0.53 0.25 0.017 0.027 0.19 −0.12
9. σω = 0 0.54 0.25 0.016 0.026 0.20 −0.11
10. ση = 0,σε = σψ 0.52 0.26 0.017 0.031 0.09 −0.19
11. σω = ση = 0,σε = σψ 0.51 0.26 0.017 0.028 0.15 −0.16
12. ρµ = 0,συ = σµ ,αS = 0 0.24 0.20 0.022 0.027 0.06 −0.36
13. ρµ = 0,συ = σµ ,αS = 0,ση = 0,
σε = σψ ,gq = 0

0.25 0.20 0.022 0.028 0.00 −0.40

14. ρµ = 0.535,συ = 0.016 0.47 0.23 0.015 0.030 −0.25 −0.39
15. k = ∞ 0.16 0.45 0.025 0.025 −0.58 −0.58

Notes: Moments calculated over 100,000 sample observations from the asymptotic distribution simulated with models calibrated
with the indirect inference estimates with 4-knot spline from table 8, except for the parameter values indicated in the first column.

coefficient of the demand innovations (model 2), the presence of planting-time shocks (model 11), and the
smoothing effect of storage (model 15). Because of their interactions, turning off each feature leads to
contributions that sum to more than 100% and so we normalize each contribution by the total. Demand shock
persistence explains 20% of the price autocorrelation, planting-time shocks account for 5%, and storage
accounts for the remaining 42%. So storage, while key to induce price persistence, explains less than half
of the actual serial correlation, which means that the other model features matter too. This result contrasts
with Deaton and Laroque’s (1996) estimation results for a model with autocorrelated supply shocks. Indeed,
they found that almost all the serial correlation in prices was attributable to shock persistence not speculative
storage. The difference with our results lies in our use of quantities as observables: this ensures that any
shock autocorrelation must be compatible with the quantity dynamics, which is not the case if we only use
information contained in prices. Planting-time shocks contribute to price persistence by linking periods.
More precisely, shocks at planting time affect production and therefore the prices in the next period, but since
they are immediately observed they also affect current prices because of the intertemporal link created by
storage. The presence of a supply response has an ambiguous effect on price autocorrelation, and is excluded
from the above decomposition. If we compare the benchmark setup with model 4, we can see that an elastic
supply decreases price serial correlation. On the other hand, in the absence of an autoregressive exogenous
demand process—i.e., comparing models 3 and 12—a supply response increases price persistence.

The simulations of the estimated model raise a new puzzle about the inability of the model to match the
price-consumption correlation. This moment is explained by the respective roles of the demand and supply
shocks in driving price movements, combined with the demand elasticity. At the extreme without demand
shocks, the correlation would be −1. Therefore, removing planting-time shocks (models 8–11) or the supply
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response (model 4) would only decrease the role of supply shocks and exacerbate the problems related to this
moment. Some improvement can be achieved by removing the persistence of the demand shock (models
2–3) or increasing the storage cost (model 15), but both lead to a lower fit of the price autocorrelation. The
indirect inference approach overestimates ρµ by 0.168 and συ by 0.003 compared with the 2SLS approach.
Comparing models 2 and 3 with the benchmark shows that overestimation of ρµ would contribute only a
little to solving this puzzle. However, setting the size of the demand shock equal to its 2SLS estimate level, in
addition to ρµ (model 14), would bring the simulated moment closer to the observed moment, inside the 99%
bootstrap confidence interval but outside the 95% interval. In other words, the covariance mismatch between
consumption and price might be due in part to the overstatement of both the persistence and variance of the
demand shocks.

The inability of the estimated model to match the price-production correlation also seems to be related to
the demand-side estimates. Then again, setting ρµ and συ to their 2SLS values is enough to obtain a perfect
fit of this moment.

Price volatility is well explained by the model if we remove the large share of this volatility caused by
the trend (as shown for two other commodities in Bobenrieth et al., 2021). Storage explains the order of
magnitude of the price fluctuations. Indeed, without storage, the price volatility implied by our model would
be 73% higher (model 15). The other model components contribute much less but in the expected direction.
For example, the autocorrelation of the demand innovations reduces the ability of storage to smooth these
shocks. Indeed, compared with the benchmark model 1, the price variance is lower in model 3 when shock
to consumption demand µt collapses to an i.i.d. normal error term. Thus, speculative storage can smooth
transitory shocks but is less efficient in the case of persistent disturbances.

Overall, the effects of the various model features on consumption and production volatility have the
expected signs. We next discuss the effects of the model variants not considered so far. In model 5, the positive
trend on quantities gq is removed. As discussed in section 2.2 this boils down to decreasing storage costs
which slightly increases price persistence. In model 6, the negative trend on price gp is removed. Because the
price trend directly affects the storers’ incentives, for a value similar to gq it has a stronger impact. Comparing
models 6 and 7 shows that its impact is very similar to the effect of a corresponding decrease in the per-unit
storage cost k (i.e., decreasing it by β (1− expgp)). The specification of model 13 is the closest to the model
estimated in Deaton and Laroque (1992): it includes neither persistent shocks nor planting-time disturbances,
and includes an inelastic supply. In this specification, price autocorrelation decreases significantly from 0.56
to 0.25 which suggests that to match the true persistence of prices, estimation of the simpler version of the
storage model considered in the literature so far would require lower storage costs.

7.2 Historical decomposition

The model can be used to perform a historical decomposition, i.e., to extract the various shocks from the
series.26 This does not require indirect inference estimation per se. The linear regressions estimates would be

26Bobenrieth et al. (2013) propose another kind of historical analysis by showing the consistency between observed and predicted
stock levels. This is possible only in the context of an invertible model where it is possible to obtain all model variables from the
observables. This is not the case here, where only a subset of variables can be recovered from the observables.
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sufficient as long as the residuals are given a structural interpretation as proposed in section 3.1. Figure 3
depicts the shocks that are identified along with the log deviations of their price and quantity trends. Our
preferred estimates are from section 6.1.2: the indirect inference estimates with 4-knot spline.27
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Figure 3: Historical decomposition of the world price, production and consumption of grains into the various
shocks. Gray areas denote price spike periods defined as log deviations from the trend greater than one
standard deviation, 23.6%. The planting-time supply shock in purple corresponds to αS(ηt−1 −ωt−1).

This decomposition helps to explain the market movements through our structural model lens. However,
there is one missing piece which is stock levels, though as argued earlier the related statistics are unreliable at
the global level. In the absence of storage, the effects of the shocks are not linked over time. Still, a couple of
observations are warranted.

First, in line with the estimated standard deviations of the shocks, supply disturbances are larger than
demand disturbances. However, all the price spikes are associated with large positive demand shocks. This
applies also to the recent price spikes of 2007 and 2010–2, when the demand shocks took the form of biofuels
mandates (see e.g., Roberts and Schlenker, 2013; Wright, 2014).

Second, there are seven years when total supply shocks ϑ are one standard deviation below the mean
(< −3.3%): 1974–5, 1983, 1988, 2002–3, and 2012, but in these seven years only two (1974 and 2012)
correspond to price spikes. In all the other years, prices are close to their trends. This demonstrates the
importance of storage to buffer against supply shortages. In the absence of inventories, a −3.3% supply
shock would lead to a 63% price increase because inelastic consumption would have to respond one-to-one
to the supply shortfall.

27Figure 3 would nonetheless be very similar if created using instead the 2SLS estimates.
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7.3 The welfare effect of private storage

In this section, we assess the welfare effect of storage in agricultural commodity markets. This issue is
studied in depth in Wright and Williams (1984) but in the absence of credible estimations of the model
parameters Wright and Williams (1984) use various calibrations.28 In addition, they consider a simpler
version of the model with only a harvest-time supply shock. However, they consider a more general inverse
demand function than the simple constant elasticity function assumed here. Our structural estimates allow
us to revisit this issue. In our model, welfare is defined as the sum of agents’—consumers, storers, and
producers—surpluses. Produced and consumed quantities follow a trend, so that corresponding surpluses
increase at the same rate. This implies that if the discount factor β is inferior to exp(−gq), then intertemporal
welfare will be diverging. This is the case here; to avoid this problem, we calculate welfare assuming no
trends in either quantities or prices.

Using the notations from the detrended model, instantaneous welfare can be defined, up to an integration
constant, as the sum of the following three surpluses:

wt =−d̄
p1+αD

t

1+αD
p̄−αD eµt︸ ︷︷ ︸

Consumer surplus

+(1−δ ) ptxt−1 − (pt + kp̄)xt︸ ︷︷ ︸
Storer profit

+ ptht−1 eηt−1+εt −γ (ht)eωt︸ ︷︷ ︸
Producer profit

. (55)

We introduce storer profit because it is useful for the subsequent decomposition but due to the assumption
of constant marginal storage cost, storers operate at zero profit (in expectations) so their average profit is
zero. Dividing instantaneous welfare by the steady-state value of consumption p̄d̄ and using equation (12) for
simplification, we can derive a unit-free expression of instantaneous welfare:

wt

p̄d̄
=−(pt/ p̄)1+αD

1+αD
eµt +

pt

p̄
st − xt

d̄︸ ︷︷ ︸
Consumer efficiency gains

Storage costs︷ ︸︸ ︷
−k

xt

d̄
−β

(
ht/d̄

)1+1/αS

1+1/αS
eωt︸ ︷︷ ︸

Production costs

. (56)

In this expression, the terms are reorganized to provide a different decomposition. Since in such models one
of the main welfare effects of storage is transfer between consumers and producers caused by a change in
the mean price (Wright and Williams, 1984), it is useful to focus on efficiency. To do this, we correct the
consumer surplus using the consumption value.

From the instantaneous welfare, we can calculate the intertemporal welfare normalized to an annual value
by

Wt = (1−β )wt/
(

p̄d̄
)
+β Et Wt+1. (57)

Equation (56) can be evaluated over any state variables using the policy functions defined in section 2.4.
Equation (57) is a Bellman equation evaluated using value function iterations. The resulting welfare is a
function of the state variables. This welfare function is applied to the simulated observations to recover the

28In the absence of structural estimates, all past welfare applications of the storage model rely largely on calibrations (e.g., Gouel,
2013b), or a combination of estimation and calibration as in Steinwender (2018), Porteous (2019), and Gouel (2020).
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expected welfare over the asymptotic distribution.
These welfare effects are presented in table 12 along with the two decompositions. It shows that with an

increase of 0.31% in annual steady-state consumption, the overall welfare effects are modest. However, the
distributional effects are large and show a 4.01% increase in consumer surplus and a corresponding decrease
in producer profit. This change is related mostly to the change in the mean price: the presence of storage
reduces the mean price by 3.68% compared to the situation without storage. Our assumption of a constant
elasticity demand function means that a mean quantity preserving reduction in the consumption dispersion
leads to a mean price decrease which explains the distributional effects. By abstracting from this transfer, the
decomposition in the last three columns of the table displays only the efficiency changes and shows that the
gains are shared more equally between consumer efficiency gains and production costs.

Table 12: Welfare effects of introducing storage (expressed as a
percentage of the steady-state consumption, p̄d̄)

Consumer Producer Consumer Storage Production
Total surplus profit efficiency gains costs costs

0.31 4.01 −3.70 0.27 −0.11 0.15

Notes: Calculated over 100,000 sample observations from the asymptotic distribu-
tions simulated with models calibrated with the indirect inference estimates with
the 4-knot spline from table 8 except for the model without storage where we im-
pose k = ∞.

The small size of the overall effects is related to the choice of a setting without market failures where
risks do not matter.29 So the total effects are equal to the benefits derived from arbitrage: transferring the
commodities from periods of low values to periods of high values. With risk averse agents (as in Gouel,
2013b), the welfare effects would be larger. Finally, note that this is only an assessment of the long-run
welfare difference from introducing storage. It ignores any temporary welfare changes due to the transition
between the steady-state distributions.

8 Conclusions

This paper proposes a new empirical strategy to estimate a rational expectations storage model. It requires
five observables (current price, expected price, production, consumption, and supply shock) and reliance on a
simple linear supply and demand model as the auxiliary model in an indirect inference approach. Including
quantities as well as prices within the set of observables is crucial because it allows estimation of all the
model parameters which is important to empirically validate the model and run counterfactual simulations for
policy applications. Although the key role of storage for mediating the dynamics of commodity prices has
long been acknowledged and has been exploited widely in finance and economics, so far a full empirical
validation of a rational expectations storage model has not been carried out. To apply our approach, we

29Another reason is that we are focusing on a welfare comparison between two steady-state distributions, while Wright and
Williams (1984) show that the main welfare effect of storage is dynamic in relation to the period of stock accumulation when starting
from a situation without stocks.
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chose the empirical setting of the global grains market following Roberts and Schlenker (2013), who use an
instrumental variable strategy motivated by storage theory. While they estimate only a subset of the structural
parameters, their strategy provides a good benchmark for comparing our indirect inference estimates. We
also used their estimating equations to choose our auxiliary model.

Our results show that the long-standing price autocorrelation puzzle highlighted by Deaton and Laroque
(1992, 1996) can be solved convincingly by accounting for sufficient features of the market for grains, such
as (in decreasing order of importance): storage, a long-run price trend, autocorrelated demand shocks, and
producers’ incentive shocks associated with an elastic supply. We used our estimated model to quantify the
relative size and contribution of the various structural disturbances to the boom and bust episodes recorded
over the past 60 years. We found that total supply shocks are 30% larger than demand shocks, but that all
price spikes have been associated with large positive demand shocks.

While our estimated storage model is able to rationalize many of the observed moments, it fails to
reproduce the observed levels of the negative correlation between price and quantities. Finding a solution
to this issue will be critical to estimate the model using full-information likelihood techniques which are
likely to be more sensitive to such misspecification. Here, we can only speculate about possible sources of
misspecification in our approach. A first is the aggregation of different commodities, which may introduce
aggregation bias. A second is the deterministic arbitrage relationship assumed for storage which creates a
stochastic singularity between price and expected price. This arbitrage equation is standard in the storage
literature but there are alternatives that include a shock to the cost of storage such as in Knittel and Pindyck
(2016). A third possible source of misspecification is the assumption that all wedges between quantities
and prices are accounted for by structural shocks. This could be avoided by assuming the presence of
measurement errors as is commonly assumed when estimating DSGE models (Canova, 2014). Despite these
limits, this paper has proved that a simple storage model is able to capture the most important dynamic
features of a global commodity market.

While the present paper follows Roberts and Schlenker (2013) and focuses on the grains market, our
empirical methodology could be applicable to other storable commodity as long as there is an observable
demand or supply shock (e.g., a demand shock based on freight rates as suggested by Kilian, 2009). This
development could also help link the rational expectations storage literature to the estimation of VARs for
commodity prices (e.g., Kilian and Murphy, 2014; Baumeister and Hamilton, 2019). Unlike the macroe-
conomic literature where the interaction between the VAR and DSGE modeling is fruitful, in research on
commodity price dynamics rational expectations storage models have so far not been considered relevant
empirical models.
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Appendix

A Numerical methods

A.1 Algorithm

The proposed storage model includes three state variables, elastic supply, and isoelastic functions. These
three features complicate its numerical resolution compared to most of the storage models in the literature.
This model could be solved by a collocation method on a regular grid (see e.g., Gouel, 2013a); however,
this would be too slow for being used in estimation methods involving simulations. We therefore develop
a solution method that is specific to our model based on recent developments in the literature (Maliar and
Maliar, 2014). Technically, it is based on linear interpolation on a sparse grid using Delaunay triangulation
and a grid that is adapted to each set of parameters based on the ergodic distribution of the state variables. For
each grid point, the equations are solved by derivative-free fixed-point iterations. The expectations operators
are substituted by deterministic sums using sparse grid integration (Heiss and Winschel, 2008).

The interpolation grid is built using heuristics from the literature on numerical methods for large-scale
dynamic models (Maliar and Maliar, 2014). However, it deviates from the existing methods to accommodate
the specificity of the model in which only one state variable is endogenous. Two of the three state variables
are exogenous shocks, so the grid points corresponding to these variables can be adjusted for each parameter
change based on the new standard deviations. Only the grid points for the remaining state variable, net
availability, are adjusted based on simulations from the ergodic distribution.

Taking account of these adaptations we can generate the grid in three steps. First, we construct a grid
on the shocks {ϕ,µ} assuming σϕ = σµ = 1. This produces a Smolyak grid based on Heiss and Winschel’s
(2008) numerical integration programs. The grid can be scaled to different standard deviations. Note that we
retain the integration weights for later use. Second, the model is simulated based on a previous solution (or
guessed policy rules) which provides an availability series from which we calculate the mean s̄ and standard
deviations σs. We generate a logarithmically-spaced availability vector between s̄−4σs and s̄+5σs which in
our experience covers almost all simulated availabilities. A logarithmically-spaced vector will position more
points in the low availability area where the cutoff of no stock is likely located than would a linearly-spaced
vector. Assuming for availability a normal distribution with parameters s̄ and σs, we associate probability
weights with each vector point based on the segments on which each vector point is centered. Third, we
construct the full grid on the three state variables taking the tensor-product of the grid on shocks times the
vector on availability. The same tensor-product is used to combine the probability weights. To trim the grid
of low probability combinations, we use the weights and retain only the points with the highest probability
weights.

The grid is a function of the policy rules so should be updated with policy rules until consistency. However,
since this is a costly step the grid is updated only once for each new set of parameters. Since the optimization
algorithm used for the estimation involves smaller steps with convergence to the solution, this implies that
close to the solution the grid converges to its configuration with full updating.

For conciseness, the following algorithm includes a few simplifications. Expectations operators are
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retained; in practice, they are replaced by simple weighted sums. We omit time subscripts: next period
variables and shocks are indicated using the + exponent. We normalize the deterministic steady-state values
to 1. The algorithm then runs as follows.

Step 1. Initialization step. Choose

• A convergence criterion ϖ = 10−8 and a damping parameter λ = 0.2.

• A sparse grid on planting-time supply shocks and demand shocks {ϕ,µ}, with associated
probability weights.

• A sparse grid on shocks for numerical integration {ϕ+,ε+,µ+} with associated weights.

• Initial policy rules (guessed): P1,X 1,Q1.

Step 2. New grid step. If n = 1, then update the interpolation grid.

Step 2.1. Use the policy rules and the transition equations to simulate the model over 50,000 periods
(after excluding burn-in periods), keeping the same shocks each time the model is simulated to
update the grid. Calculate the average availability s̄ and the standard deviation of availability
σs.

Step 2.2. Generate a 12×1 logarithmically-spaced vector of availability between s̄−4σs and s̄+5σs and
associate with each points a probability assuming a normal distribution with parameters s̄ and
σs.

Step 2.3. Use a tensor product of the grid on shocks and the vector on availability to obtain a full grid and
keep the 140 grid points with the highest probability weights. Divide availability by demand
shock to obtain the grid points on net availability.

Step 2.4. Use the policy rules, Pn and Qn, to adjust the response variables to the new grid {s̃,ϕ,µ}:

pn−1 = Pn(s̃,ϕ,µ), (A1)

qe,m,n−1 = Qn(s̃,ϕ,µ), (A2)

xm,n−1 = max(0,(s̃−d(pn−1))eµ). (A3)

Step 3. Solve for production and storage. Define qe,1,n = qe,m,n−1 and x1,n = xm,n−1. For each gridpoint,
iterate on m according to the following steps:

Step 3.1. Calculate next-period price for a combination of interpolation grid points and integration nodes:

p+ = Pn
([

(1−δ )xm−1,n e−gq +qe,m−1,n eε+
]

e−µ+
,ϕ+,µ+

)
. (A4)

Step 3.2. Fixed-point iteration with damping:

qe,m,n = (1−λ )qe,m−1,n +λ eϕ

[
E
(

p+ eε+
)]αS

, (A5)

xm,n = (1−λ )xm−1,n +λ max
(
0, s̃eµ −d

(
β (1−δ )egp E

(
p+

)
− k

)
eµ
)
. (A6)
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If max
(
∥qe,m,n −qe,m−1,n∥2,∥xm,n − xm−1,n∥2

)
< λϖ or m = mmax then stop iterations and go

to next step.

Step 4. Approximation step. Calculate prices as

pn = d−1 (s̃− xm,n e−µ
)
, (A7)

from which we update the price function

Pn+1 (s̃,ϕ,µ) = pn. (A8)

We also update the production function

Qn+1 (s̃,ϕ,µ) = qe,m,n. (A9)

Step 5. Terminal step.
If n = 1 or ∥pn − pn−1∥2 ≥ ϖ or max(∥qe,m,n −qe,m−1,n∥2,∥xm,n − xm−1,n∥2)≥ λϖ then increment
n to n+1 and go to step 3.

At the end of the algorithm, we use the most recent calculated values of xm,n and E(p+) to determine the
storage rule, X , and an approximation of the expected prices which are useful to simulate the model.

There are a few things to note about this algorithm. First, the stop criterion of the inner fixed point on
production and storage implies that this fixed point may stop before convergence is achieved. We choose
mmax = 5 so that it occurs frequently. This is a useful procedure since production and storage levels do not
need to be perfectly consistent with the price rule before the overall algorithm converges. It is better to stop
after a few iterations when a reasonable guess can be made rather than solving for a perfect intermediary
solution requiring many iterations. In addition, for poor price rules there may be no solution to this fixed
point. However, to ensure that production and storage levels eventually converge to a level consistent with
the price rule when the algorithm stops, this convergence is tested in step 5.

Second, due to the damping parameter the convergence criterion for step 3 needs to be stricter than
the convergence criterion for the norm of pn − pn−1 in the final step. With the same convergence criterion,
production and storage levels would not be sufficiently updated in the last steps of the algorithm and it would
cycle infinitely between the inner and outer loops.

Third, the interpolation is made not on prices but on the logarithm of prices. This increases the precision
in stockout situations where the price then becomes an isoelastic function of net availability. Therefore, a
linear interpolation in logarithm will be exact in stockouts, while a linear interpolation in level would not.
This detail is not included in the above algorithm.

A.2 Solution precision

Once a solution is obtained, its accuracy can be assessed by rewriting unit-free the equations (13) and (14)
which give two measures of the Euler equation errors. Using a net availability and shocks series, {s̃i,ϕi,µi},
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the storage and production equation errors can be assessed using (see Gouel, 2013a, for details of the
derivation of these measures for the storage model)

EEx
i = 1−

d
(
max

(
d−1 (s̃i) ,β (1−δ )egp EP ([(1−δ )X (s̃i,ϕi,µi)e−gq +Q (s̃i,ϕi,µi)eε ]e−µ ,ϕ,µ)− k

))
eµi

s̃i eµi −X (s̃i,ϕi,µi)
,

(A10)

EEh
i = 1− eϕi {E [P ([(1−δ )X (s̃i,ϕi,µi)e−gq +Q (s̃i,ϕi,µi)eε ]e−µ ,ϕ,µ)eε ]}αS

Q (s̃i,ϕi,µi)
. (A11)

To assess the precision of the algorithm, we simulate the model calibrated on our preferred estimation
(4-knot spline in Table 8). We then sample 1,000 points from the ergodic distribution and use them to calculate
the Euler equation errors defined above. Table A1 presents the average and the maximum errors expressed
in base-10 logarithm. The accuracy in both equations is similar. At about −2, maximum errors involve a
$1 error every $100 consumption or production decisions. However, such high error rates are rare and are
located close to cutoff situations of no storage. The average errors involve less than $1 error every $1,000
decisions, and are closer to $1 error for every $10,000 decisions. This is a satisfactory level of precision for
this type of model, and as the Monte Carlo experiments show is sufficiently high for our estimation procedure
to recover the true parameter values if the model is well specified.

Table A1: Euler equations error (log10 |EE|)

Equation Average error Max error

EEx −3.65 −1.77
EEh −3.73 −2.01

Notes: Calculated over 1,000 simulations from the model’s
ergodic distribution. The model parameters are from our pre-
ferred estimation (4-knot spline in Table 8).

B Supplementary tables
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Table A2: Parameter bounds when mini-
mizing the indirect inference objective

Parameter Lower bound Upper bound

ρµ 0 1
ρη ,ω −1 1
σω 0 1
ση 0 0.1
σε 0 0.1
συ 0 0.1
δ 0 1
k 0 +∞

αD −∞ 0
αS 0 +∞

Table A3: Additional Monte Carlo experiments with instrumental variables for σω = 20%

ρµ cq −1 σψ (%) σϑ (%) συ (%) αD αS

T =100, {Supply: E(F) =19, E(p-value) =0.07}, {Demand: E(F) =38, E(p-value) =0.00}
Mean 0.50 0.194 2.50 3.42 1.62 −0.071 0.084
St. dev. 0.12 0.093 0.17 0.37 0.21 0.015 0.036
RMSE (%) 23.84 51.322 6.90 11.30 13.48 21.325 45.259
SE 0.12 0.094 0.18 0.20 0.015 0.036
T =200, {Supply: E(F) =39, E(p-value) =0.01}, {Demand: E(F) =76, E(p-value) =0.00}
Mean 0.50 0.189 2.50 3.38 1.61 −0.070 0.081
St. dev. 0.07 0.062 0.12 0.24 0.14 0.010 0.023
RMSE (%) 14.24 34.025 4.86 7.08 8.95 13.716 29.057
SE 0.08 0.063 0.13 0.14 0.010 0.023
T =1000, {Supply: E(F) =193, E(p-value) =0.00}, {Demand: E(F) =384, E(p-value) =0.00}
Mean 0.50 0.181 2.50 3.35 1.60 −0.070 0.078
St. dev. 0.03 0.027 0.06 0.11 0.06 0.004 0.010
RMSE (%) 6.57 14.971 2.24 3.14 3.97 6.337 12.494
SE 0.03 0.027 0.06 0.06 0.004 0.010

Notes: See notes to table 1.
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Table A4: Additional Monte Carlo experiments with indirect inference and σω = 20% (auxiliary model based
on OLS regressions)

ρµ ρη ,ω σω (%) ση (%) σε (%) συ (%) δ (%) k (%) αD αS

T = 100 OID: 0.028
Mean 0.50 −0.40 20.70 1.48 1.98 1.60 2.03 2.92 −0.071 0.081
St. dev. 0.08 0.19 3.61 0.28 0.23 0.17 1.36 1.81 0.011 0.018
RMSE (%) 16.43 47.90 18.37 18.55 11.62 10.56 68.13 60.46 15.951 22.608
ASE 0.07 0.21 3.52 0.29 0.25 0.19 13.44 12.48 0.014 0.018
T = 200 OID: 0.022
Mean 0.50 −0.40 20.31 1.50 1.99 1.60 1.95 3.00 −0.070 0.080
St. dev. 0.06 0.14 2.50 0.18 0.16 0.13 1.26 1.45 0.008 0.013
RMSE (%) 11.07 35.19 12.62 12.03 7.82 7.92 63.25 48.32 11.047 16.566
ASE 0.05 0.14 2.31 0.20 0.17 0.13 10.21 9.30 0.010 0.012
T = 1000 OID: 0.012
Mean 0.50 −0.40 20.05 1.50 1.99 1.60 1.86 3.03 −0.070 0.080
St. dev. 0.03 0.06 1.13 0.08 0.07 0.05 1.03 0.99 0.003 0.006
RMSE (%) 5.06 16.24 5.63 5.50 3.48 3.36 51.89 32.97 4.911 7.629
ASE 0.02 0.06 0.98 0.09 0.08 0.06 4.85 4.45 0.004 0.005

Notes: See notes to table 2.
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Table A5: Monte Carlo experiment with indirect inference approach (auxiliary model based on 2SLS
regressions)

ρµ ρη ,ω σω (%) ση (%) σε (%) συ (%) δ (%) k (%) αD αS

T = 56 σω = 5% OID: 0.021
Mean 0.48 −0.43 4.89 1.48 1.98 1.59 1.94 2.92 −0.068 0.078
St. dev. 0.12 0.29 0.94 0.31 0.27 0.30 1.18 2.08 0.016 0.014
RMSE (%) 24.59 71.96 19.00 20.81 13.63 18.52 59.02 69.47 22.652 17.802
ASE 0.11 0.66 2.97 0.38 0.32 0.23 20.47 19.61 0.016 0.022
T = 56 σω = 10% OID: 0.019
Mean 0.48 −0.41 10.31 1.48 1.97 1.58 1.95 2.91 −0.068 0.077
St. dev. 0.13 0.27 2.53 0.33 0.28 0.28 1.19 2.09 0.015 0.020
RMSE (%) 25.41 66.66 25.50 22.02 14.26 17.57 59.74 69.69 21.210 25.697
ASE 0.11 0.54 5.48 0.41 0.34 0.24 21.83 20.85 0.017 0.030
T = 56 σω = 20% OID: 0.015
Mean 0.47 −0.39 21.98 1.48 1.96 1.58 2.04 2.83 −0.068 0.074
St. dev. 0.14 0.26 8.00 0.34 0.29 0.28 1.16 1.96 0.015 0.029
RMSE (%) 27.57 65.90 41.21 23.01 14.42 17.70 57.83 65.56 21.630 36.339
ASE 0.12 0.48 13.83 0.46 0.37 0.27 23.37 22.19 0.018 0.042
T = 100 σω = 20% OID: 0.004
Mean 0.49 −0.38 21.98 1.49 1.96 1.59 1.91 2.98 −0.070 0.077
St. dev. 0.10 0.18 6.82 0.26 0.23 0.23 1.23 1.66 0.013 0.025
RMSE (%) 20.76 46.59 35.48 17.60 11.56 14.50 61.85 55.26 18.113 31.064
ASE 0.08 0.29 8.69 0.33 0.28 0.18 18.68 16.96 0.012 0.025
T = 200 σω = 20% OID: 0.004
Mean 0.50 −0.39 20.73 1.50 1.99 1.61 1.96 2.96 −0.070 0.079
St. dev. 0.07 0.13 3.72 0.17 0.15 0.16 1.20 1.41 0.009 0.017
RMSE (%) 13.85 32.47 18.97 11.31 7.78 10.23 60.19 47.17 12.376 21.814
ASE 0.06 0.19 5.03 0.23 0.19 0.12 13.80 12.65 0.008 0.017
T = 1000 σω = 20% OID: 0.004
Mean 0.50 −0.40 20.17 1.50 1.99 1.60 1.90 2.98 −0.070 0.080
St. dev. 0.03 0.06 1.44 0.08 0.07 0.07 0.98 0.98 0.004 0.008
RMSE (%) 6.51 14.61 7.23 5.17 3.41 4.18 49.33 32.64 5.251 9.707
ASE 0.02 0.08 2.09 0.10 0.09 0.05 6.93 6.24 0.003 0.007

Notes: See notes to table 2. For T = 100, 1 replication had to be dropped due to non-convergence.
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Table A7: Supply equation estimation, 1962–2007

(1) (2) (3)

Panel A. 2SLS
Supply elasticity bq 0.102∗∗∗ 0.093∗∗ 0.089∗∗∗

(0.032) (0.035) (0.033)
Shock cq 1.130∗∗∗ 1.177∗∗∗ 1.157∗∗∗

(0.194) (0.204) (0.185)
Panel B. First stage
Lagged shock bE p −3.908∗∗∗ −3.579∗∗∗ −3.619∗∗∗

(1.232) (1.062) (1.089)
Shock cE p −2.908 −2.311 −2.382

(1.822) (1.483) (1.568)
Panel C. OLS
Supply elasticity bq 0.111∗∗∗ 0.086∗∗∗ 0.085∗∗∗

(0.017) (0.018) (0.017)
Shock cq 1.162∗∗∗ 1.157∗∗∗ 1.144∗∗∗

(0.135) (0.141) (0.133)

σu2SLS
q

0.018 0.016 0.015
σϑ 2SLS 0.032 0.032 0.031
σuEP 0.159 0.140 0.143
σuOLS

q
0.018 0.016 0.015

σϑ OLS 0.033 0.032 0.031
First stage F-stat 10.065 11.367 11.037
p-value for Hausman test 0.805 0.846 0.880
p-value for Cumby-Huizinga test (panel A) 0.007 0.012 0.041
Observations 46 46 46
Spline knots 3 4 5

Notes: Standard errors robust to heteroskedasticity in parenthesis. ∗∗∗, ∗∗, and ∗ indicate significance at the 99%, 95%, and 90%
levels, respectively. The knots are placed following Roberts and Schlenker (2013): 1963, 1984, and 2005 for 3 knots; 1962, 1976,
1992, and 2006 for 4 knots; and 1962, 1973, 1984, 1995, and 2006 for 5 knots.
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Table A8: Demand equation estimation, 1962–2007

(1) (2) (3)

Panel A. 2SLS
Demand elasticity bc −0.034 −0.045 −0.047

(0.033) (0.032) (0.032)
Lagged price cc 0.022 0.012 0.011

(0.023) (0.020) (0.021)
Lagged demand dc 0.977∗∗∗ 0.768∗∗∗ 0.633∗∗

(0.228) (0.217) (0.242)
Panel B. First stage
Shock bp −3.926∗∗∗ −3.743∗∗∗ −3.819∗∗∗

(0.939) (1.056) (1.041)
Lagged price cp 0.599∗∗∗ 0.532∗∗∗ 0.547∗∗∗

(0.146) (0.149) (0.152)
Lagged demand dp 4.960∗∗ 3.644∗ 4.403∗

(2.034) (2.007) (2.446)
Panel C. OLS
Demand elasticity bc 0.000 −0.007 −0.005

(0.012) (0.011) (0.010)
Lagged price cc −0.003 −0.012 −0.016

(0.016) (0.015) (0.015)
Lagged demand dc 0.743∗∗∗ 0.593∗∗∗ 0.433∗∗

(0.131) (0.152) (0.174)
Panel D. 2SLS using Roberts and Schlenker’s approach (eqs. (38) for 2nd stage and (42) for 1st)
Demand elasticity bc −0.033 −0.062∗ −0.059∗∗

(0.023) (0.031) (0.028)

σu2SLS
c

0.015 0.015 0.015
σuP 0.175 0.175 0.175
σuOLS

c
0.014 0.013 0.012

σu2SLS, RS
c

0.022 0.020 0.018
σµ2SLS 0.072 0.023 0.019
First stage F-stat (panel A) 17.479 12.573 13.461
p-value for Hausman test (panel A) 0.274 0.221 0.117
p-value for Cumby-Huizinga test (panel A) 0.484 0.335 0.113
First stage F-stat (panel D) 20.780 17.059 17.156
p-value for Hausman test (panel D) 0.008 0.052 0.033
p-value for Cumby-Huizinga test (panel D) 0.000 0.035 0.067
Observations 46 46 46
Spline knots 3 4 5

Notes: Standard errors robust to heteroskedasticity in parenthesis, except for panel D where they are also robust to autocorrelation.
The lagged demand estimates in panel A are bias adjusted (Orcutt and Winokur, 1969). ∗∗∗, ∗∗, and ∗ indicate significance at the
99%, 95%, and 90% levels, respectively. The knots are placed following Roberts and Schlenker (2013): 1963, 1984, and 2005 for 3
knots; 1962, 1976, 1992, and 2006 for 4 knots; and 1962, 1973, 1984, 1995, and 2006 for 5 knots.
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C Sensitivity analyses

Table A9: Estimation results for the indirect inference approach (auxiliary model based on 2SLS regressions)

4-knot spline 5-knot spline

Estimate Standard error Estimate Standard error

ρµ 0.477 (0.117) 0.443 (0.145)
ρη ,ω −0.484 (0.420) −0.434 (0.425)
σω 0.285 (0.115) 0.278 (0.113)
ση 0.014 (0.005) 0.014 (0.005)
σε 0.019 (0.004) 0.019 (0.004)
συ 0.017 (0.003) 0.016 (0.003)
δ 0 0
k 0.017 (0.013) 0.015 (0.013)
αD −0.044 (0.015) −0.037 (0.015)
αS 0.054 (0.020) 0.056 (0.020)

σϕ 0.026 (0.005) 0.025 (0.005)
σψ 0.024 (0.002) 0.024 (0.002)
σµ 0.019 (0.003) 0.018 (0.003)
σϑ 0.032 (0.004) 0.032 (0.004)

OID p-value 0.658 0.774

Notes: See notes to table 8.
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Table A10: Additional estimation results (auxiliary model based on OLS regressions and detrending with 4
knots)

FAOSTAT data FAOSTAT data without rice USDA-PSD data

II – Only shrinkage (k = 0) 2SLS II 2SLS II

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

gp −0.020 −0.020 −0.020
gq 0.025 0.027 0.025

ρµ 0.714 (0.067) 0.530 (0.158) 0.674 (0.074) 0.533 (0.226) 0.738 (0.059)
ρη ,ω −0.450 (0.315) −0.396 (0.287) −0.437 (0.341)
σω 0.189 (0.032) 0.219 (0.042) 0.177 (0.026)
ση 0.015 (0.006) 0.021 (0.006) 0.013 (0.007)
σε 0.020 (0.005) 0.024 (0.006) 0.020 (0.005)
συ 0.018 (0.003) 0.021 (0.005) 0.024 (0.004) 0.018 (0.004) 0.022 (0.004)
δ 0.038 (0.013) 0 0
k 0 0.032 (0.012) 0.038 (0.015)
αD −0.064 (0.018) −0.083 (0.035) −0.087 (0.026) −0.076 (0.033) −0.089 (0.025)
αS 0.086 (0.016) 0.088 (0.035) 0.096 (0.020) 0.086 (0.026) 0.079 (0.012)

σϕ 0.027 (0.005) 0.037 (0.006) 0.024 (0.005)
σψ 0.025 (0.002) 0.030 (0.003) 0.032 (0.003) 0.023 (0.002) 0.024 (0.002)
σµ 0.026 (0.005) 0.025 (0.006) 0.033 (0.007) 0.022 (0.006) 0.033 (0.006)
σϑ 0.034 (0.004) 0.040 0.044 (0.005) 0.031 0.031 (0.003)

OID 0.060 0.068 0.169

Notes: See notes to tables 6–8.

Table A11: Estimation results by commodity (auxiliary model based on OLS regressions and detrending with
4 knots)

Maize Soybeans Wheat

2SLS II 2SLS II 2SLS II

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

gp −0.020 −0.018 −0.021
gq 0.028 0.044 0.019

ρµ 0.501 (0.192) 0.735 (0.062) 0.482 (0.195) 0.565 (0.102) 0.605 (0.197) 0.628 (0.085)
ρη ,ω −0.960 (1.641) 0.201 (0.233) −0.133 (0.245)
σω 0.170 (0.028) 0.362 (0.098) 0.473 (0.160)
ση 0.013 (0.018) 0.025 (0.015) 0.035 (0.007)
σε 0.039 (0.007) 0.040 (0.010) 0.024 (0.009)
συ 0.028 (0.005) 0.034 (0.005) 0.048 (0.013) 0.059 (0.017) 0.029 (0.010) 0.037 (0.010)
δ 0 0 0
k 0.048 (0.016) 0.018 (0.018) 0.060 (0.028)
αD −0.110 (0.031) −0.131 (0.033) −0.090 (0.111) −0.168 (0.118) −0.096 (0.074) −0.126 (0.048)
αS 0.162 (0.057) 0.165 (0.032) 0.226 (0.181) 0.170 (0.054) 0.060 (0.052) 0.064 (0.024)

σϕ 0.043 (0.010) 0.063 (0.011) 0.051 (0.008)
σψ 0.041 (0.004) 0.042 (0.004) 0.047 (0.004) 0.047 (0.004) 0.040 (0.004) 0.042 (0.004)
σµ 0.033 (0.007) 0.051 (0.010) 0.055 (0.016) 0.071 (0.025) 0.037 (0.014) 0.047 (0.015)
σϑ 0.057 0.058 (0.008) 0.073 0.074 (0.008) 0.047 0.056 (0.007)

OID 0.486 0.119 0.102

Notes: See notes to tables 6–8.
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Table A12: Sensitivity of estimates to estimation moments (indirect inference approach with auxiliary model
based on OLS regressions and detrending with 4 knots)

Coefficient ρµ ρη ,ω σω ση σε συ k αD αS

bq 0.180 −0.066 −0.606 −0.037 0.034 0.071 0.198 0.012 0.545
cq 0.044 6.265 −0.060 −0.116 0.042 −0.124 −0.690 −0.296 0.502
bc 0.030 0.015 0.026 0.089 −0.012 0.002 0.326 0.175 −0.015
cc −0.017 0.026 0.009 −0.004 0.007 −0.013 −0.064 −0.048 −0.009
dc 0.161 0.238 −0.034 0.095 −0.010 −0.134 −0.134 −0.070 0.081
bp −0.048 1.103 −0.134 −0.981 0.457 −0.159 0.430 −0.394 0.168
cp 0.137 −0.107 0.218 −0.157 0.040 0.140 −0.306 0.371 −0.297
dp 0.001 −0.004 −0.000 0.004 −0.001 −0.003 0.001 −0.004 −0.001
bE p −0.009 −0.213 0.025 0.440 −0.249 0.014 0.157 0.062 −0.006
cE p −0.041 0.754 0.012 −0.409 0.272 −0.201 −0.245 −0.419 0.021
σuq 0.088 −0.554 0.408 −0.153 0.073 −0.093 −0.132 −0.226 0.602
σuc −0.216 0.885 0.031 −0.432 0.277 1.260 0.912 1.468 −0.035
σup −0.236 −1.362 0.032 1.157 −0.581 0.171 2.205 −0.307 0.043
σuE p 0.490 0.052 0.599 −0.286 0.166 0.283 −0.054 0.273 −0.748
σuψ

−0.141 1.036 −0.086 0.604 1.057 −0.548 −0.852 −1.056 0.120

Notes: Measure of sensitivity of Andrews et al. (2017), normalized as elasticities of estimated parameters with respect to moments.

Table A13: Sensitivity of estimates to estimation moments (indirect inference approach with auxiliary model
based on OLS regressions and detrending with 4 knots, without per-unit storage costs)

Coefficient ρµ ρη ,ω σω ση σε συ δ αD αS

bq 0.182 −0.057 −0.605 −0.039 0.034 0.072 0.165 0.027 0.542
cq 0.052 6.242 −0.057 −0.187 0.089 −0.106 −0.647 −0.284 0.505
bc 0.032 0.012 0.026 0.091 −0.016 −0.004 0.286 0.178 −0.015
cc −0.017 0.023 0.010 0.001 0.005 −0.012 −0.054 −0.048 −0.009
dc 0.145 0.270 −0.037 0.081 0.001 −0.136 −0.121 −0.076 0.089
bp −0.047 1.128 −0.138 −0.979 0.463 −0.144 0.541 −0.389 0.177
cp 0.126 −0.046 0.228 −0.178 0.061 0.129 −0.416 0.384 −0.308
dp 0.001 −0.008 0.000 0.005 −0.003 −0.002 0.004 −0.002 −0.001
bE p −0.010 −0.266 0.029 0.484 −0.279 0.004 0.118 0.045 −0.010
cE p −0.039 0.747 0.011 −0.414 0.273 −0.168 −0.136 −0.378 0.020
σuq 0.089 −0.557 0.402 −0.148 0.067 −0.076 −0.099 −0.205 0.607
σuc −0.214 0.774 0.031 −0.347 0.226 1.212 0.803 1.413 −0.031
σup −0.195 −1.262 0.028 1.075 −0.524 0.064 2.015 −0.512 0.050
σuE p 0.473 0.040 0.604 −0.283 0.156 0.290 0.024 0.326 −0.754
σuψ

−0.141 1.120 −0.089 0.552 1.088 −0.463 −0.518 −0.966 0.125

Notes: Measure of sensitivity of Andrews et al. (2017), normalized as elasticities of estimated parameters with respect to moments.
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