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Abstract 

Climate change has significantly increased the complexity of farm management. This 
study investigates the vulnerability of French irrigated farms to agricultural risks by 
developing predictive models using a dataset of 631 farms in metropolitan France 
from 2020 to 2022, sourced from the Farm Accountancy Data Network (FADN). The 
vulnerability level is categorized into three classes: low, moderate, and high, based 
on four indicators that measure economic stability and resilience. We employed 
several machine learning algorithms to identify the most accurate predictive model 
for farm vulnerability, with Random Forests achieving the highest accuracy. The 
analysis revealed that irrigation water costs per irrigated area, farm technical-
economic orientation, and geographical location are the most critical determinants of 
vulnerability. Partial Dependence Plots further highlighted the marginal effects of 
these factors on the predicted high vulnerability level. Our findings indicate that the 
farm's location, technical-economic orientation, and irrigation parameters play a role 
in determining vulnerability levels. These results provide valuable insights for 
policymakers and farmers in developing strategies to enhance the resilience of 
agricultural systems in the face of climate change. 
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Introduction 

Making choices to managing the variety of environmental challenges is not an easy 

objective to achieve. In the agricultural sector, farm management has become 

increasingly complex due to climate change. 

According to the sixth Intergovernmental Panel On Climate Change (IPCC) report 

published in March 2023, Socio-economic scenarios indicate that the global warming 

level of 1.5°C above pre-industrial levels will be reached by the early 2030s, 

regardless of immediate global CO2 emission reduction efforts. In agriculture, 

climate change has already decreased productivity over the past 50 years. As global 

warming progresses, climate change impacts will intensify, affecting temperature 

extremes, precipitation intensity, drought severity, and the frequency and intensity of 

rare climatic events. 

In Europe, agriculture bears the brunt of the region’s drought-related losses with a 

53% share, representing 1.3 billion euros in annual economic losses (European 

Commission. Joint Research Center. 2020). Nevertheless, in the event of an extreme 

weather event, as was the case with the 2003 drought, which cost the European Union 

13 billion euros in economic losses, of which 4 billion euros went to France (Létard, 

Flandre, and Lepeltier 2004). The question of how to manage climate risk and adapt 

agriculture is brought up by these extraordinary events. In January 2024, the Chair of 

Risk Management in Agriculture conducted a survey titled "Risk Management in 

Agriculture in a Context of Vulnerability, with a Focus on Water" among French 

farmers. The responses to the open-ended questions revealed a significant concern 

about the threat of drought (Ben Brahim et al., 2024). 

The degree to which a farming system is susceptible, or unable to cope with all the 

climatic risks which, according to Komarek (2020), are closely linked with other 

agricultural risks (Price, institutional, financial, human …) and can positively or 

negatively influence them is its vulnerability that differs from farm to farm (IPCC, 

2001). In all formulations, vulnerability is defined by three key parameters: the stress 

to which a system is exposed, its sensitivity, and its adaptive capacity (Adger, 

2006). According to Urruty et al. (2016), the level of exposure corresponds to the 

frequency, intensity, and duration of perturbations affecting the studied systems. The 

level of sensitivity corresponds to the degree to which the studied system is affected 

by exposure to perturbations and the adaptive capacity corresponds to the ability of 

agricultural systems to transform their nature or structure to cope with an ever-

changing environment (Milestad et al., 2012). When determining the level of 

vulnerability in a farming system, the primary objective is to gather information and 

create policies that enable the identification of potential sources of vulnerability, their 

mitigation, and the long-term preservation of farms (Sneessens et al., 2019). 

An increasing number of publications have studied vulnerability to climate 

change, and the agricultural sector is often described as one of the most vulnerable 

ones (Neset et al., 2019). According to M. G. Debesai (2020), various socioeconomic, 

biophysical and environmental factors influence vulnerability levels in Eritrea, due 

to climate change. In his paper, some variables such as dependency ratio, profession, 

and access to clean water were found to have a negative relationship with the 

vulnerability level indicating that the vulnerability is highly likely to occur as these 

variables decrease. On the other hand, variables including gender, low level of 

education and income diversity, poverty level, low access to credit and market were  
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found to have a positive relationship with the high level of vulnerability. Differences 

in socio-demographic factors of households such as level of education, gender and 

profession exhibited different levels of vulnerability. Income diversity and level of 

poverty were also significantly determining the level of vulnerability in farming 

households. Location was also a factor in determining the level of vulnerability as the 

different zones indicate significant variability to the degree of vulnerability. According 

to P. Marie Chimi et al. (2023), multiple factors including socio-economic and 

infrastructure conditions, crop types, and climate variables such as temperature and 

rainfall influence vulnerability levels of smallholder farmers to climate change in the 

northern part of the Centre Region of Cameroon. Finally, geographically speaking and 

according to Mirza (2003), farms located in arid or semi-arid areas, low-altitude 

coastal zones, flood-prone areas, or small islands are particularly the most vulnerable.  

   The perception of risk by the farmer plays an important role in the choice of the 

strategies adopted by him to manage the risk faced by his farm. Studies have shown 

that farmers’ awareness of risks has increased in recent years (OECD, 2012). When 

the farmer perceives a risk to their farm, they will attempt to adjust it to make it 

manageable. At this stage, the farmer begins with prevention using irrigation 

techniques for example and has two fundamental techniques to alter their level of risk 

which are diversification or insurance. The measures adopted by the farmer usually 

depend on their risk aversion, level of equity, and the characteristics of their land 

(Kapsambelis, 2022). Studies have shown that the more farmers choose to implement 

preventive measures such as irrigation, the less likely they are to subscribe to insurance 

contracts (Enjorlas and Sentis, 2011; Blank and mcDonald, 1995; Smith and Goodwin, 

1996). 

   There is a long list of adapting production systems and preventive measures in 

response to new challenges, especially those imposed by climate change among which 

irrigation that acts as insurance against the risk of drought and can be integrated as a 

measure to anticipate the risk of water shortage (Amigues et al., 2006). The 

strengthening of irrigation appears to be the primary response of farmers to climate 

change, especially for farms in the south of France (Ayphassorho et al., 2020). Thus, 

irrigation often appears as the first response to the risk of drought, but it is not 

necessarily the most desirable solution. Indeed, this preventive measure is criticized 

by a group of stakeholders advocating for the preservation of water resources and 

natural areas (Kapsambelis, 2022). This technique involves several parameters such as 

irrigation costs which are defined according to fixed costs (depreciation, equipment 

maintenance, membership fees, etc.), variable costs (water and electricity 

consumption), labor costs. Those costs depend on the type of the farm, its size, the 

equipment used, and the method of water withdrawal (Salmon, 2020). The other 

parameter are water resources which are divided into two networks, individual water 

networks include various sources tailored to local needs. Hill reservoirs, ponds, and 

water tanks not connected to a watercourse allow for the storage of rainwater for 

irrigation and domestic use, especially in rural areas. Groundwater, obtained through 

drilling or wells, provides a continuous water supply but requires pumping 

infrastructure. Surface water, such as rivers, canals, and lakes, is also used, though its  

availability varies according to local regulations. Collective networks encompass 

public infrastructure for large-scale distribution. Alternative sources like rainwater 

harvesting and greywater reuse are encouraged for sustainable management (FAO,  
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2021). Among these parameters we have also irrigation method. Micro-irrigation, for 

example, distributes water in a planned manner at low pressure and close to the plants, 

primarily used in orchards and market gardening. Sprinkler irrigation, on the other 

hand, sprays water like artificial rain, making it easy to implement depending on the 

crops and terrain. Lastly, gravity irrigation allows water to flow on the surface 

through small channels, mainly used on sloped terrain (SDES, 2024). Each method 

has its specific characteristics and use conditions. 

In this study, we consider, according to the literature, determinants of vulnerability 

such as the farm’s geographical location and its technical-economic orientation. 

However, we test if the farmer’s choices regarding irrigation contribute to the farm’s 

vulnerability level. Also, we aim to fit a predictive model that quantifies the 

contribution of each determinant on the overall vulnerability. 

The paper is organized into five sections. The « Data & descriptive statistics » 

section presents our data source and describes the variables that we used in this study. 

The « Exploratory Data Analysis » section to visualize our data. The « Method » 

section describes our methodology to test our variables importance and fit the 

predictive model in detail. The « Results » section presents our results. Finally, we 

discuss these results in the last section of the paper. 

 

Data & descriptive statistics 
 

In our study, we will examine 631 irrigated farms in metropolitan France during a 

three-year period from 2020 to 2022. Data is sourced from the Farm Accountancy 

Data Network (FADN) which was implemented in France since 1968 and is based on 

an annual survey conducted in all Member States of The European Union according 

to common rules. Information on the status of the farm, economic data, and cultivated 

crops is provided for each farm. The French FADN is designed to ensure that the 

sample is representative of a set of farms and consists of almost 7000 farms per year. 

The data is anonymized to prevent the identification of any specific farm within the 

network. Therefore, in terms of the farm's location, the finest scale provided is the 

administrative region. 

Study variables are presented in Table 1 below. The outcome variable is 

vulnerability level, categorized in three levels ranging from low, moderate, high. 

To calculate the vulnerability level of agricultural farms, we adopted the method 

by Sneessens et al. (2019). This method relies on four indicators designed to assess 

vulnerability according to the definition proposed by the Intergovernmental Panel on 

Climate Change (IPCC) (Figure 1).  

The first indicator is the relative standard deviation of annual pre-tax operating 

income per worker over a long period. This indicator provides insights into the 

sensitivity and exposure of each farm to risks. The mathematical formula for this 

indicator is written as follows: 

𝑅𝑆𝐷𝐶𝑅.𝐿𝑈  (%) = | 
𝑆𝐷𝐶𝑅.𝐿𝑈

µ𝐶𝑅.𝐿𝑈
 | ∗ 100 

 

The second indicator is the average relative distance of annual consolidated pre-tax 
operating income to the minimum wage. This indicator adds a social dimension to 

vulnerability measurement.  
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The mathematical formula for this indicator is written as follows: 

 

𝑅𝐷𝐶𝑅.𝐿𝑈  (%) = mean (
𝐶𝑅. 𝐿𝑈 − 𝑀𝐼𝑁

𝑀𝐼𝑁
) ∗ 100 

 

  The third indicator is the number of economic disruptions, which corresponds to the 

instances where annual consolidated pre-tax operating income per worker decreases 

by more than 25% from one year to the next. This measures the adaptive capacity of 

farms. 

  Finally, the fourth indicator is the economic recovery time, which corresponds to 

the number of years required to restore annual consolidated pre-tax operating income 

per worker to pre-disruption levels. This indicator qualifies the resilience of a farm. 

  Combining the results obtained for the four vulnerability indicators through 

Hierarchical Cluster Analysis allows us to identify three groups of agricultural 

systems. Statistical analysis of these groups subsequently defines the three levels of 

vulnerability for each identified group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Components of vulnerability (Source: IPCC, 2001). 
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Table 1. Description of study variables 
 

 
 
Variable Description 

  

Outcome variable  

Vulnerability level 1: Slightly vulnerable 

2: Moderately vulnerable 

3: Highly vulnerable 

Independent variables 

 

Disadvantaged zone code 

 

 

 

 

 

 
 

 

 

 

 

 

 

1: Majority of the farm is not located in 

a disadvantaged zone 

21: Majority of the farm is located in an 

area subject to natural constraints 

22: Majority of the farm is located in an 

area subject to specific constraints 

3: Majority of the farm is located in a 

mountainous area 

Code for main source for water 

irrigation 

 

 

 
 

 

 

 

 

 

 

 

 
 

Irrigation water costs per irrigated 

area 

 

1: Individual network (hill reservoirs, 

ponds, water reservoirs, not connected to 

a watercourse) 

2: Individual network (groundwater: 

wells, boreholes) 

3: Individual network (surface water: 

streams, canals, lakes) 

4: Collective Networks 

5: Individual network (other sources) 

Continuous variable 

Code for main irrigation method 1: Surface irrigation 

2: Sprinkler irrigation 

3: Micro-irrigation 
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Table 1 (Continued). Description of study variables 
 

Variable Description 

 

Independent variables 

 

 

Region Code 

 

 

 
 

Technical-economic orientation 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Categorical variable with categories 

representing the 13 regional codes of 

metropolitan France 

 
 

1500: Cereal cultivation and cultivation of 

oilseed and protein crops 

 

1600: Other major crops 

 

2800: Vegetable and mushroom cultivation 

 

2900: Flower and diverse horticulture 

cultivation 

 
3500: Viticulture (grape cultivation) 

 

3900: Fruit cultivation and other permanent 

crops 

 

4500: Dairy cattle farms 

 

4600: Beef cattle farms 

 

4700: Dairy, beef, and meat production 

 

4813: Sheep and goat farms 
 

4840: Sheep, goats, and other herbivores 

 

5100: Pig farms 

 

5200: Poultry farms 

 

5374: Various combinations of grain-eating 

animals 

 

6184: Mixed crop-livestock farming 
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To provide a comprehensive overview of the dataset, we present summary statistics for 
our study variables.  

  Table 2 provides a summary of the categorical variables. The total number of farms 

were 631 out of which a majority of them, 32%, in Normandy. Nearly half of the farms, 

49.13%, are classified as highly vulnerable. Additionally, 49.92% of the farms are not 

situated in disadvantaged zones. In terms of irrigation practices, 50.24% use micro-

irrigation, while 55.94% rely on collective networks as their irrigation water source. 

Regarding specialization, the majority of the sample, 27.73%, focus on fruit cultivation 

and other permanent crops.  

   Summary statistics of the continuous variable “Irrigation costs per irrigated area” are 

presented in the table 3 down below. 

 
Table 3. Summary statistics of continuous variables 
 

Variable Min/Max Mean (SD) 

 

Irrigation costs per 

irrigated area 

 

 

0/17 767 

 

860.9 (1407.883) 

 
  The minimum amount of irrigation costs per irrigated area is 0. This may be due to the 

fact that some farms might have access to free water sources, such as rivers and lakes. 

The average amount is 860.9 with a standard deviation of 1407.883 which suggests that 

there is a wide variation in irrigation costs among different farms. 

 

Exploratory Data Analysis (EDA) 
 
Exploratory Data Analysis (EDA) serves as a crucial initial step in data science projects, 

involving the scrutiny and visualization of data to grasp its fundamental characteristics, 

uncover patterns, and discern relationships between variables. It encompasses studying 
and exploring datasets to comprehend their primary traits, reveal patterns, pinpoint 

outliers, and recognize connections among variables, typically preceding more formal 

statistical analyses or modeling endeavors. EDA holds considerable significance for 

several reasons, including facilitating familiarity with the dataset, identifying patterns 

and relationships, detecting anomalies and outliers, informing feature selection and 

engineering, optimizing model design, facilitating data cleaning, and enhancing 

communication of findings (Joshi, Bhargava, & Aggarwal, 2020). 

    In our analysis, we conducted univariate analysis, focusing on the distribution of 

variables like vulnerability levels, main source of irrigation water, main irrigation 

method and disadvantaged zone code. These visualizations (Figure 2) offer a detailed 

overview of the farm cohort, reflecting the complex interplay of variables. Each chart 

provides a distinct perspective on the diversity of farm characteristics within the dataset. 
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Figure 2. Pie chart distribution of four categorical variables from our dataset. 

 
Next, we employed bivariate analysis to explore and quantify the relationships between 

pairs of variables (Figure 3). This approach was integral to our exploratory data analysis, 

enabling us to uncover potential associations that could inform further research. 
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Figure 3. Bar plots to visualize the distributions of categorical variables in our dataset. 

 

   We observe that Auvergne-Rhône-Alpes and Occitanie have the highest number of 

highly vulnerable farms compared to other regions. We can also note that specialized in 

viticulture and mixed crop-livestock farms have the highest number of highly vulnerable 

farms compared to other orientations. Furthermore, for all three irrigation methods, the 

number of highly vulnerable farms is high, but those using micro-irrigation have a 

slightly larger difference between the highly vulnerable and moderately vulnerable 

categories compared to other methods. Concerning irrigation water source, farms using 
collective networks or individual networks such as groundwater (wells, boreholes) tend 

to be more highly vulnerable compared to other irrigation water sources.  
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  Finally, we observe that farms not in disadvantaged zones show a considerable amount 

of vulnerability, particularly in the highly vulnerable category, possibly due to bias since 

in our database, nearly 50% of the farms fall into the category of non-disadvantaged 

zones. 

 

Method 
 

In this study, we are more inclined to initially employ a Random Forest model for testing 

our variables importance and predicting the contribution of each one on the farm's 

vulnerability level. This algorithm depends on the parameter number of trees, which the 

user must choose. In practice, it is essential to ensure that the forest has reached its 
convergence regime. The evolution of Out-Of-Bag (OOB) errors as a function of the 

number of trees, the classification error, and the Area Under the Curve (AUC) are 

presented in the figure below (Figure 4). 

 

 
Figure 4. AUC (left) and classification errors (right) as a function of the number of 

trees. 
 

   We observe in Figure 4 that the errors are stable; therefore, we can consider that 500 

trees are enough. 

   Random Forests are selected for their ability to handle both numerical and categorical 

data, capture complex nonlinear relationships, and provide a feature importance 

measure for interpretability. However, to ensure a thorough analysis, we explored and 

compared the performance of multiple models, including Logistic Regression, Naive 

Bayes and Linear Discriminant Analysis. To identify the most accurate predictive model 

for vulnerability level, we tested these machine learning algorithms and the accuracy 

scores for each model are illustrated in this Table down below (Table 3).
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Table 3. Comparative Analysis of ML Models for Predicting Vulnerability Level 
 

Model Accuracy Performance Summary 

 

Logistic Regression 

 

 

0.5736926 

 

 

It achieved an accuracy of 57.36%. This 

model provides a moderate level of 

performance indicating that it may capture 

some patterns in the data but may be limited 

by the complexity of the factors involved. 
 

Naive Bayes 

 

 

0.5340729 

 

 

Performed the worst among the tested 

models, achieving an accuracy of 53.40%, 

indicating that it may not capture the 

complexities of the dataset effectively for 

predicting vulnerability level. 

 

Linear Discriminant 

Analysis 

 

 

0.5768621 

 

Similar to Logistic Regression, this 

ensemble method suggests that it might not 

fully capture the intricate relationships 

within the dataset. 
 

Random Forest 

 

0.9286846 

 

It achieved a high accuracy of 92.86%. This 

ensemble method leverages multiple 

decision trees to improve prediction 

accuracy and handle overfitting effectively. 

 
 

   After choosing the model, its evaluation is a critical step in machine learning 

workflow. It involves assessing the performance of a trained model using various 

metrics to determine how well it generalizes to unseen data. In our study, a confusion 

matrix was used to assess the model’s performance which calculates indicators such as 

accuracy, error rate, specificity and sensitivity. Accuracy is a measure of the correctly 

predicted observations over the prediction’s total number (Table 4). 

 

Table 4. Model Accuracy results 
 

Overall Statistics  

Accuracy 0.9287 

95% C.I (0.9057, 0.9475) 

No Information Rate 0.4913 

P-Value <2e-16 

Kappa 0.8775 

Mcnemar’s Test P-Value 0.4218 
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   The matrix helps in showing how the classification has been done for each class. 

Table 5 shows the confusion matrix for all classes. This classification has the 

correctly classified observations in the test data set in the diagonal, while off-diagonal 

elements represent misclassified observations for the classes. Moderately and highly 

vulnerable classes got the highest number of classifications (289 and 242) in the 

classification problem. 

 

Table 5. Confusion Matrix by Class 
 

 Reference   

Predictions Slightly 

vulnerable 

Moderately vulnerable Highly 

vulnerable 

 

Slightly 

vulnerable 

 

Moderately 

vulnerable 

 

Highly vulnerable 

 

 

55 

 

 

6 

 

 

3 

 

2 

 

 

242 

 

 

13 

 

5 

 

 

16 

 

 

289 

 
   To determine the performance of the classification per class, an overall performance 

by class table was drawn, showing sensitivity and specificity; positive classes for each 

class classified correctly against other classes, and negative classes classified correctly 

against other classes respectively for the three classes. Once again, the per class 

performance ranked highly and moderately vulnerable as with high sensitivity (93.23% 

and 94.16%) and specificity (95.02% and 94.12%) respectively. The other class, while 

its specificity was high (98.76%), it means that its classification as not belonging to that 

class was high. This is shown in Table 6. 
 

Table 6. Statistics by Class 
 

 Slightly 

vulnerable 

Moderately 

vulnerable 

Highly 

vulnerable 

Sensitivity 0.85938 0.9416 0.9323 

Specificity 0.98765 0.9412 0.9502 

Pos Pred Value 0.88710 0.9167 0.9475 

Neg Pred Value 0.98418 0.9591 0.9356 

Prevalence 0.10143 0.4073 0.4913 

Detection Rate 0.08716 0.3835 0.4580 

Detection Prevalence 0.09826 0.4184 0.4834 

Balanced Accuracy 0.92351 0.9414 0.9412 
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Results 
 

In this section, we employed two methods: Variable Importance to assess the 

contribution of our independent variables to the outcome variable, and Partial 

Dependence Plots to examine the marginal effect of each independent variable in 

predicting a certain class of vulnerability. 

  The Variable importance is a measure of how the variance is reduced, or the impurities 

reduction on each decision tree brought about by the gain in information or the Gini 

coefficient index. Variable importance is calculated through a Mean Decrease Impurity 

which sums up Gini Index decrease of the variables and averages to obtain a list of 

important variables. It is given as:  

Vimp(xi) =  
1

ntrees

[1 − ∑ GI

ntrees

j=1

(i)(j)] 

 

  Figure 5 depicts the variable importance by measuring the decrease in mean Gini. A 

higher mean decrease in Gini will imply a higher importance. The results in Figure 5 

indicate that the variable Irrigation water charges per irrigated area was the variable with 

the highest importance, followed by farm’s technical-economic orientation. Irrigation 

method is the least important but its non-zero mean decrease in Gini value indicates that 

it still provides some predictive power. 

 

 
Figure 5. Variables by importance 

 

The second method is Partial Dependence Plots (PDPs) which illustrate the marginal 

effect of a feature or a set of features on the predicted outcome of our machine learning 

algorithm. They provide insights into how the model’s predictions change when the 

feature values vary, while keeping all other features constant. Partial dependence plots 

for irrigation method, irrigation water source, farm’s technical-economic orientation, 

disadvantaged zone code, irrigation charges per irrigated area and region code are 

presented in Figure 6. 
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Figure 6. Partial Dependence Plots for Features Influencing Predicted Probability of 

Class 3 (Highly vulnerable). 
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  The Partial Dependence Plots (PDPs) for various factors reveal significant insights into 

their marginal effects on classifying farms as highly vulnerable (class 3). For the main 

irrigation method, surface irrigation (Method 1) exhibits the highest partial dependence 

(~0.56), indicating a strong positive marginal effect, while sprinkler irrigation (Method 

2) shows a marked decrease (~0.44), suggesting a negative marginal effect. Micro-

irrigation (Method 3) has a slight increase compared to Method 2 but remains lower 

than Method 1, indicating that surface irrigation is most favorable for classifying farms 

as highly vulnerable, whereas sprinkler irrigation is less favorable. Regarding the main 
irrigation water source, source 2 (individual network such as groundwater: wells, 

boreholes) exhibits the highest partial dependence (~0.525), indicating a significant 

positive marginal effect, while source 5 (individual network: other sources) shows the 

lowest (~0.425), suggesting it is least favorable for classifying farms as highly 

vulnerable. For the disadvantaged area code, farms located in mountainous areas (code 

3) exhibit the highest partial dependence (~0.530), indicating a significant positive 

marginal effect, whereas farms in areas subject to natural constraints (code 21) show the 

lowest partial dependence (~0.475), indicating a negative marginal effect, thus making 

mountainous areas more favorable for high vulnerability classification. The PDP for 

irrigation water costs per irrigated area shows significant variability for low to moderate 

costs, with partial dependence reaching a maximum at around 7500 euros/ha and 
stabilizing around 0.54 beyond this point, suggesting a positive marginal effect up to 

this threshold. For region codes, pays de la Loire (code 53) exhibits the highest partial 

dependence (~0.60), suggesting a significant positive marginal effect, while Centre-Val 

de Loire (code 28) shows the lowest (~0.45), indicating a negative marginal effect. 

Finally, for the farm’s technical-economic orientation, specialized farms in viticulture 

(code 3500) exhibit the highest partial dependence (~0.60), indicating a strong positive 

marginal effect, whereas farms combining dairy, beef, and meat production (code 4700) 

show the lowest (~0.40), suggesting a negative marginal effect. These findings 

collectively highlight the factors most and least favorable for classifying farms as highly 

vulnerable. 

Discussion — conclusion 

This study brings out the application of random forests to predict a complex variable 

such as farm’s vulnerability level. The random forest is a significant improvement 

from classical regression techniques, although not an exhaustive level, use of both for 

the suitable problem is appropriate. We proved that strategic choices such as the 

farm’s location, technical-economic orientation and irrigation’s parameters play a 

role that cannot be ignored in the determination of the farm’s vulnerability level and 

should be taken into consideration for the farm’s management strategy. 

Partial Dependence Plots highlighted the empirical differences between modalities of 

each determinant of vulnerability. The predicted gradient between highly vulnerable and 

irrigation methods defines a difference between surface irrigation and sprinkler irrigation. 

Similarly, for the class highly vulnerable and the source of irrigation water. Individual 

networks from groundwater and those from other sources show a difference in predicting 

the highly vulnerable outcome. However, irrigation water charges per irrigated area, 

which is the most important variable in determining our outcome, show a complex 

function with several fluctuations at first then a stabilization from a certain value. For the 

disadvantaged zone code, it seems that the farm’s altitude is a factor to consider and 

probably an indicator of its exposition level. Finally, for the farm’s location and technical- 
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economic orientation, we show that certain regions and crops might be contributing to 

class the farm as highly vulnerable. Although, it is important to mention that these 

determinants are complex and depend on many factors so even though our approach has 

several strengths such as the used algorithm which allows us to highlight the complex 

functions necessary for predicting farm’s vulnerability level, it is not without limitations. 

However, it could have been more pertinent if we worked at the scale of a single region 

and a single technical-economic orientation, or if we had access to the farms' departments 

or some more precise information about their locations and production mode.  

     Our results are relevant for practical decisions but future studies may improve these 

results by exploring further factors and using a larger sample size. 
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