

How to meet strong sustainability in dairy farming an exploratory approach using ecological accounting

Kofivi Dzegle¹, Julia Jouan² et Aude Ridier¹

- 1) Institut Agro, INRAE, SMART, 35042, Rennes, France
- 2) UniLaSalle, Cyclann, Ker Lann Campus, 35170 Bruz, France

Plan

1- Introduction

2- Empirical framework

3- Results

4- Conclusion

(SER INRAØ *cirad* 18^{èmes} JRSS - Reims - 5 et 6 décembre 2024

Why does this study matter?

- 6 of the 9 planetary boundaries have been crossed due to human activities
- Major role of agriculture & livestock farming (Bowles et al., 2019; Campbell et al., 2017)
- Strong sustainability conceptual framework to guide actions (Solow, 1993)
 Natural capital should be preserved independently of other types of capital
 No substitution possible between natural and other forms of capital

Assess the environmental impact of agriculture from a strong sustainability perspective

Main contribution

- Assess costs associated with environmental performance of dairy farms
- Focus on two critical natural capitals: climate and biodiversity
- Methodology

Use linear mixed-effects model to estimate the costs associated with GHG reduction and biodiversity preservation

Apply the CARE (Comprehensive Accounting in Respect of Ecology) method to integrate the environmental costs into ecological accounting to reflect their impact on farm accounting

Empirical application

Analyze a sample of 3,438 dairy farms in Brittany, France from 2018 to 2022

Identify the natural capitals impacted by agricultural activity

Define preservation indicators and desired levels Determine preservation actions and their costs

Adjust the balance sheet and income statement in ecological accounting

Classification of farms based on GHG emissions

- GHG emissions (kg CO₂ eq per liter of milk)
- Using the Agribalyse database (ADEME)

Validation/comparison: benchmarked against CAP'2ER reports from the French livestock institute (Institut de l'élevage)

 Classification aligned with the objectives of the National Low-Carbon Strategy (SNBC)

Targeted annual reduction: 1.4% in emission levels

Average emissions of the 2018 sample projected to 2024

Class 1: Emissions \leq 1.13 kg CO₂ per liter of milk

Class 2: Emissions > 1.13 kg CO₂ per liter of milk

2018	(starting year)	: 1,23
2019	: 1,23 × 0,986	5 = 1,21
2020	: 1,21 × 0,986	5 = 1,19
2021	: 1,19 × 0,986	5 = 1,17
2022	: 1,17 × 0,986	5 = 1,16
2023	: 1,16 × 0,986	6 = 1,14
2024	: 1,14 × 0,986	5 = 1,13

Identify the natural capitals impacted by agricultural activity

Define preservation indicators and desired levels Determine preservation actions and their costs

Adjust the balance sheet and income statement in ecological accounting

Classification of farms based on biodiversity

- Biodiversity = Share of temporary grasslands / UAA
- Classification based on sample trends

Observed trend: a decrease in the share of grasslands over the years

Objective: to slow down this concerning trend

Constraint imposed: maintained at the sample's average level

Reference threshold: 38% (average observed in 2018)

- Class 1: Temporary grasslands/UAA < 38%</p>
- > Class 2: Temporary grasslands/UAA \ge 38%

Identify the natural capitals impacted by agricultural activity

Define preservation indicators and desired levels Determine preservation actions and their costs

Adjust the balance sheet and income statement in ecological accounting

Econometric approach to calculate natural capital maintenance costs

Linear Mixed-Effects Model

Isolate specific cost associated with reducing GHG emissions and maintaining a good level of temporary grasslands

Accounting for variability between farms

$$y_{it} = \alpha_0 + \alpha Z'_{it} + \gamma_t + \mu_i + \varepsilon_{it}$$

- y_{it} production cost in year t for individual i
- γ_t temporal effects
- μ_i random individual effects
- Z'_{it} explanatory variables vector
- ε_{it} residual

Class based on emissions Class based on biodiversity Size of Utilized Agricultural Area (UAA) Herd size (Number of cows) Forage system (< 10%; 10 à 30%; > 30% of maize) Business type (individual, EARL, GAEC, Others)

Introduction		Empirical framework	Results	Conclusion
The CARE operationa	l pro	cess in four steps (Ra	mbaud and Chenet, 2021)	
Identify the natural capitals impacted by agricultural activity	Defin	e preservation indicators and desired levels	Determine preservation actions and their costs	Adjust the balance sheet and income statement in ecological accounting
Sample description	-le te	for an electronic de constant	is a shair a famora in Dustan	
Individual accounting	data	for specialized convent	tional dairy farms in Bretag	ne

Unbalanced panel of 3,438 farms over 3 years (2018 - 2022)

Indicators	Mean	
Emission (kg CO ₂ eq/l milk)	1.21	
Emission (kg CO ₂ eq/ha of UAA)	8,339	
Grassland Area / UAA (%)	37	
Production Cost (€/1000I)	499	
Total AWU (Annual Work Units)	1.85	Average emission for Brittany using
UAA (ha)	90	CAP'2ER Method (2013-2021 – Ide
Number of Dairy Cows	77	 0.97 kg CO2/liter of milk 8.261 kg/ba
Milk produced (liters)	597,071	- 0,201 kg/11a

Identify the natural	Define pr
capitals impacted by	and
agricultural activity	

efine preservation indicators and desired levels Determine preservation actions and their costs

Adjust the balance sheet and income statement in ecological accounting

Environmental efforts costs

Variables	Coefficients	Standard errors
Constant	563.20	(4.59)***
GHG emission (≤ 1,13 Kg eq CO ₂ /I milk)	-6.72	(1.05)***
Temporary grassland/UAA (≥ 38%)	8.43	
Forage system Mostly grass	2.15	(7.34)
Forage system Grass + Corn	10.33	
Random effects	82%	
Number of observations	10,518	
R2	61%	

Identify the natural capitals impacted by agricultural activity

Define preservation indicators and desired levels Determine preservation actions and their costs

Adjust the balance sheet and income statement in ecological accounting

Preservation cost calculation - Reference farm of the model

Indicators	Mean	Standard deviation
Emission (kg CO2 eq/l milk)	1.28	0.10
Grassland Area / UAA (%)	25	10
Production Cost (€/1000I)	480	59
Total AWU	2.44	0.66
UAA (ha)	115	38
Number of Dairy Cows	92	27
Milk produced (liters)	738,065	240,279
Total emission (tons CO2 eq)	945	24

Reference Farm Year 2018 Emissions > 1.13 kg/liter Temporary grasslands < 38% of the UAA Legal status: GAEC Forage system > 30% maize

366 farms

- Reduce GHG emissions < 1.13 kg CO2 eq/l
- Increase temporary grasslands ≥ 38% of the UAA

Calculation of preservation costs on the sample

Actions	Formula	Result
GHG emissions reduction /I	€6.72 /1000I * 738,065 I / 1000	Gain of €4,960
Increase in grassland / UAA	€8.43 /1000 * 738,065 / 1000	Cost of €6,222

Identify the natural capitals impacted by agricultural activity

Define preservation indicators and desired levels Determine preservation actions and their costs

Adjust the balance sheet and income statement in ecological accounting

Impacts on the Balance Sheet of the <u>desired</u> preservation actions

Assets	gross d	lepreciation	net	Liabilities	provision	refund	net
Financial Assets				Financial Capital			
Fixed Assets Current Assets <i>Natural Assets</i>				Equity Loans <i>Natural Capitals</i>			
Climate (Emissions avoided)	4,960		4,960	Climate			
Biodiversity (Grassland maintained)		6,222	- 6,222	Biodiversity			
				Adapted income CAR	E		
TOTALAssets	+4,960	-6,222	-1,262	TOTAL Liabilities			

INRAØ *cirad* 18^{èmes} JRSS - Reims - 5 et 6 décembre 2024

Introduction	>	Empirical framework	Results		Conclusion
The CARE operational	proc	cess in four steps (Rambaud and Chenet, 20	21)	
Identify the natural capitals impacted by agricultural activity	Define	e preservation indicators and desired levels	Determine preservation actions and their costs		Adjust the balance sheet and income statement in ecological accounting
Colouistion of the post		tual procession of	ationa		

Calculation of the cost of <u>actual</u> preservation actions

Characteristics of **one** dairy farm that does reach the desirable climate dans biodiversity thresholds

Indicators	Mean
Emission (kg CO2 eq/l milk)	1.71
Grassland Area / UAA (%)	25
Production Cost (€/1000I)	442
Total AWU	2
UAA (ha)	97
Number of Dairy Cows	90
Milk produced (liters)	630,074
Total emissions (tons CO2 eq)	1,077

Calculation of the cost of his/her actions

Actions	Formula	Result
GHG emissions reduction	€6.72 /1000I * 630,074I / 1000	Gain of €4,234 €
Increase in grassland	€8.43 /1000I * 630,074 I / 1000	Cost of €5,311€

Mismatch with the **desired** preservation costs

lentify the natural pitals impacted by gricultural activity	Define prese and de	fine preservation indicate and desired levels		rs Determine preservation actions and their costs			and income statemen ecological accountir	
		Adapte	d balar	nce sheet				
Assets	gross (depreciation	net	Liabilities	provision	refund	net	
Financial Assets				Financial Capital				
Fixed Assets				Equity				
Current Assets				Loans				
Natural Assets				Natural Capitals				
Climate (Emissions avoided)	4,960		4,960	Climate	4,234		4,234	
Biodiversity (Grassland maintaine	d)	6,222	- 6,222	Biodiversity		5,311	-5,311	
				Adapted income CA	RE		- 185	
TOTAL Assets	+4,960	-6,222	-1,262	TOTAL Liabilities			-1,262	

SER INRAØ Girad 18^{èmes} JRSS - Reims - 5 et 6 décembre 2024

Identify the natural	0
capitals impacted by	
agricultural activity	

Define preservation indicators and desired levels

Determine preservation actions and their costs

Adjust the balance sheet and income statement in ecological accounting

Adapted Income Statement

Sales	
Subsidies	
Biodiversity preservation product	5 311
Climate preservation product	4 990
Operating revenues (variation)	+ 10 271
Purchases	
Current expenses	
Amortization expenses	
Biodiversity renewal expenses	6 222
Climate preservation expenses	4 234
Operating expenses (variation)	+10 456
Adapted Income CARE	-185

Conclusion

Consideration of strong sustainability, in contrast to the majority of studies that follow a weak sustainability logic, where the environment is often subordinated to economic efficiency

Efficiency gains help reduce GHG emissions in compliance with the Paris Agreement Maintaining biodiversity requires additional costs

Exploration of the implementation of CARE accounting

Requires a large amount of data on agricultural practices Assessment of the value of natural capital through an econometric approach

Ecological accounting remains an area of research to be explored in the agricultural sector

Thank You! Des questions?