

Classification sur distance de Wasserstein de distributions quantiles de coûts : application aux pays et régions européens

Dominique Desbois¹ desbois@agroparistech.fr

(1) UMR Paris-Saclay Applied Economics (PSAE), INRAE-AgroParisTech

Plan

Introduction

1- Estimations de coûts spécifiques

2- Distance et Test de Wasserstein

3- AFTD, CAH, Test quadratique, DivClust: résultats

Perspectives

1- Estimations de coûts spécifiques

Estimations des coûts

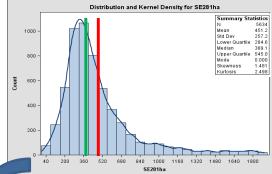
Modèle économétrique des coûts spécifiques de production

 $X_{ih} = \sum_{k=1}^{K} \alpha_{ih}^{k} Y_{kh} + \varepsilon_{ih} \quad with \quad \varepsilon_{ih} \quad i.i.d.$ Proof

Produi Charges	Y_{1h}	\cdots Y_{kh}	Y_{Kh}	TOTAL CHARGE
X_{1h}	a_{1h}^1	$\cdots a_{1h}^k$	$\cdots a_{1h}^{K}$	$\sum X_{1h}$
•	:	• • •	•	- - -
X_{ih}	a_{ih}^1	$\cdots a_{ih}^k$	$\cdots a_{ih}^{K}$	$\sum X_{ih}$
:	:	: :	•	= -
X_{Ih}	a_{Ih}^1	a_{Ih}^k	••• a_{Ih}^{K}	$\sum X_{Ih}$
TOTAL PRODUIT	$\sum Y_{1h}$	$\sum Y_{kh}$	$\sum Y_{Kh}$	$\sum_{k} Y_{kh} = \sum_{i} X_{ih}$

FACEPA Project, FP7 European program, (D.Desbois, 2015),

Coûts spécifiques

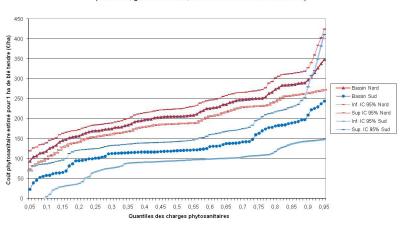


Méthode : régression quantile

$$\min_{\beta} \left\{ \sum_{\vec{i} x_i \ge y_i'\beta} q \left| x_i - y_i'\beta \right| + \sum_{\vec{i} x_i \le y_i'\beta} (1 - q) \left| x_i - y_i'\beta \right| \right\}$$

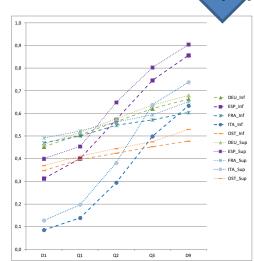
Estimation: quantiles conditionnels Processus quantile : blé, France, 2006

Blé tendre : processus quantile du coût phytosanitaire, bassins Nord et Sud (RICA 2006, grandes cultures, estimations basées sur les surfaces)



Distributions

pays européens : porc, 2006



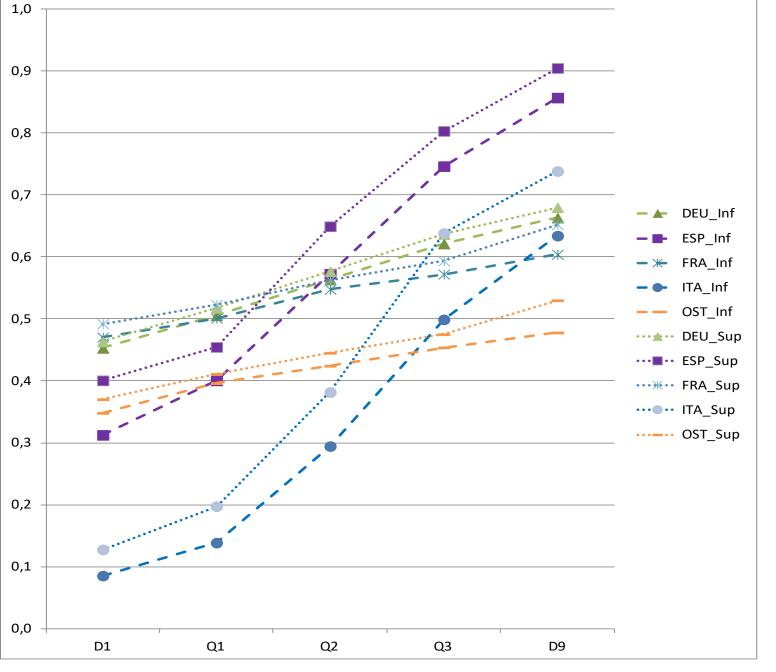
Desbois, Butault & Surry, 2013,2017)

modèles à « translation d'échelle » (ESP, ITA) pentes hétérogènes

versus

modèles à « homothétie d'échelle » (DEU, FRA, OST) pentes homogènes

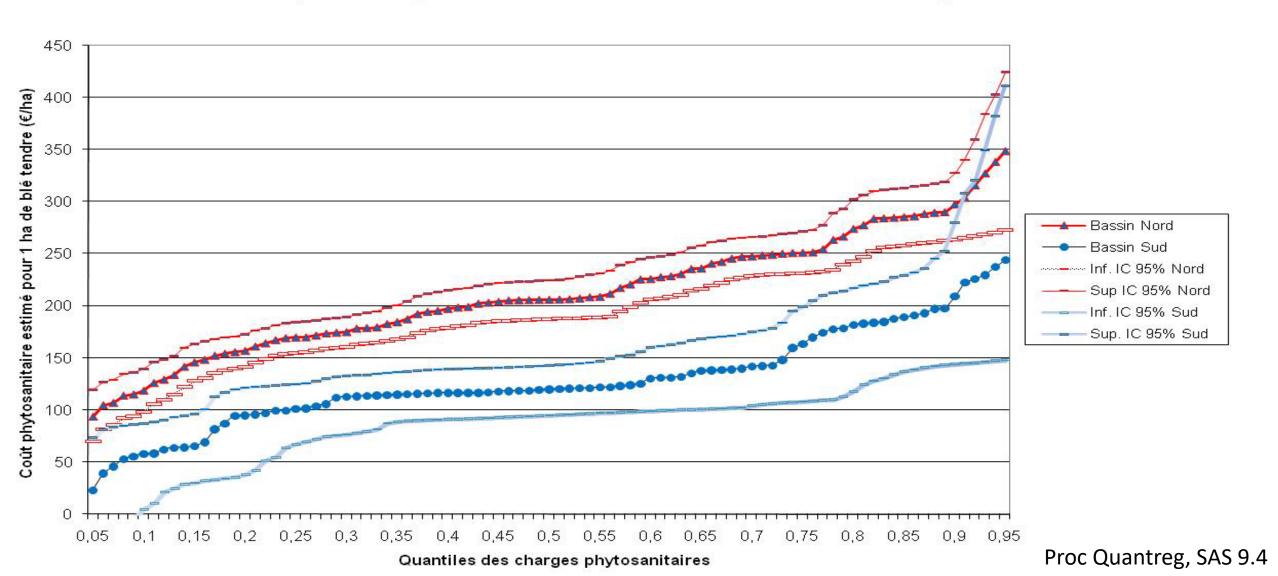
Proc Quantreg, SAS 9.4



Proc Quantreg, SAS 9.4

Estimations conditionnelles de processus quantiles : test graphique de dominance stochastique entre deux distributions

Blé tendre : processus quantile du coût phytosanitaire, bassins Nord et Sud (RICA 2006, grandes cultures, estimations basées sur les surfaces)



Propriétés d'équivariance des quantiles conditionnels sous transformation monotone

Les statistiques d'ordre sont équivariantes par transformation monotone

si
$$\lambda \in [0; \infty]$$
 alors $\mu_q(\lambda \cdot X + C \mid Y) = C + \lambda \cdot \mu_q(X \mid Y)$
si $\lambda \in [-\infty; 0]$ alors $\mu_q(\lambda \cdot X + C \mid Y) = C + \lambda \cdot \mu_{(1-q)}(X \mid Y)$

Par re-paramétrisation en X de M = Y - X

On obtient:

$$\mu_q(\widehat{M \mid Y}) = \mu_q(\widehat{Y - X \mid Y}) = 1 - \mu_{(1-q)}(\widehat{X \mid Y})$$

2- Distance et Test de Wasserstein

Distance de Wasserstein

• Sur l'espace de Lebesgue \mathcal{L}^k des fonctions dont la puissance d'ordre $k \in [0, +\infty[$ est intégrable pour la mesure de Lebesgue, la distance de Wasserstein d'ordre k peut être définie par :

$$W_k(\mu, \nu) = \inf \left\{ \left(\mathbb{E}[\|X - Y\|^k] \right)^{1/k} \middle| \mathbb{P}_X = \mu \wedge \mathbb{P}_Y = \nu \right\}$$

- La distance de Wasserstein W_k vérifie sur \mathcal{L}^k tous les axiomes d'une métrique : séparation, symétrie et inégalité triangulaire (Clement & Desch, 2008)
- Pour les distributions X et Y, on peut construire une distance de Wasserstein d'ordre 2 (Irpino & Verde, 2006) sur l'espace \mathcal{L}^2 des fonctions de carré intégrables, à partir de leurs fonctions quantiles F^{-1} :

$$W_2(X,Y) = \sqrt{\int_0^1 |F_X^{-1}(t) - F_Y^{-1}(t)|^2 dt}$$

Intervalles d'estimation quantile conditionnelle

• Le processus quantile conditionnel partitionne la distribution empirique du paramètre d'intérêt (coût unitaires des intrants) en intervalles d'estimation quantile conditionnelle contigus I_h associés à leur poids π_h :

$$I_h = \left[\underline{y_h}; \overline{y_h} \right]$$
 tel que $\underline{y_h} \le \overline{y_h}$

• Les intervalles du processus d'estimation quantile conditionnelle forment une tribu sur [0;1] :

• La pondération π_h vérifie les axiomes probabilistes d'une mesure positive finie :

$$\pi_h \ge 0$$
et
$$\sum_{h=1}^{H} \pi_h = 1$$

• Sous hypothèse de distribution locale uniforme , chaque intervalle d'estimation peut être codé par son centre c_h et son rayon r_h :

$$c_h = \left(\underline{y_h} + \overline{y_h}\right)/2$$
 $r_h = \left(\overline{y_h} - \underline{y_h}\right)/2$

Distance de Wasserstein entre processus d'estimations quantiles conditionnels

• La distance quadratique univariée entre deux processus quantiles d'estimation conditionnelle Z et Z':

$$w_2(Z,Z')^2 = \sum_{h=1}^{H} \pi_h^* d_w(I_h,I_h')^2 = \sum_{h=1}^{H} \pi_h^* \left[(c_h - c_h')^2 + \frac{1}{3} (r_h + r_h')^2 \right]$$

munis de la pondération $\pi_h^* = (\pi_h + \pi_h')/2$

peut être étendue sans difficultés à un espace multivarié de dimension finie Δ , (Verde & Irpino, 2006):

$$W_{2}(Z,Z')^{2} = \sum_{\delta=1}^{\Delta} \left\{ \sum_{h_{\delta}=1}^{H_{\delta}} \pi_{h_{\delta}}^{*} \left[\left(c_{h_{\delta}} - c'_{h_{\delta}} \right)^{2} + \frac{1}{3} \left(r_{h_{\delta}} + r'_{h_{\delta}} \right)^{2} \right] \right\}$$

Décomposition de la distance quadratique de Wasserstein

• Décomposition de la distance quadratique de Wasserstein entre deux distributions u et v de fonctions quantiles respectives F_u^{-1} et F_v^{-1}

$$\begin{split} d_W(u,v)^2 &= \mathrm{d}_W^2 \big(F_u \ , F_v \ \big) = \int_0^1 \big(F_u^{-1}(t) - F_v^{-1}(t) \big)^2 dt \\ &= (\mu_u - \mu_v)^2 + (\sigma_u - \sigma_v)^2 + 2\sigma_u \ \sigma_v \ - 2Cov_{QQ}(u,v) \\ &= (\mu_u - \mu_v)^2 + (\sigma_u - \sigma_v)^2 + 2\sigma_u \ \sigma_v \ \Big(1 - Cor_{QQ}(u,v) \Big) \\ &\text{où } Corr_{QQ}(u,v) = \int_0^1 (F_u^{-1}(t) - \mu_u) (F_v^{-1}(t) - \mu_v) \ dt / \sigma_u \ \sigma_v \end{split}$$

est interprétable comme la somme de trois composantes :

$$= tendance + dispersion + forme$$

(Irpino et Romano, 2007)

Test de *Wasserstein*

• Le test de Wasserstein compare deux distributions empiriques en utilisant la distance de Wasserstein d'ordre k, W_k , entre deux fonctions de répartition E et F.

$$w_k(E,F) = \left(\int_{x \in \mathbb{R}} |E(x) - F(x)|^k dx\right)^{1/k}$$

• Le calcul de la p-valeur est basé sur l'inégalité de **Dvoretzky–Kiefer–Wolfowitz** (1956) qui fournit une limite maximale à la distance entre une fonction de distribution empirique G_n d'un échantillon de taille n par rapport à la fonction de distribution théorique G de la population

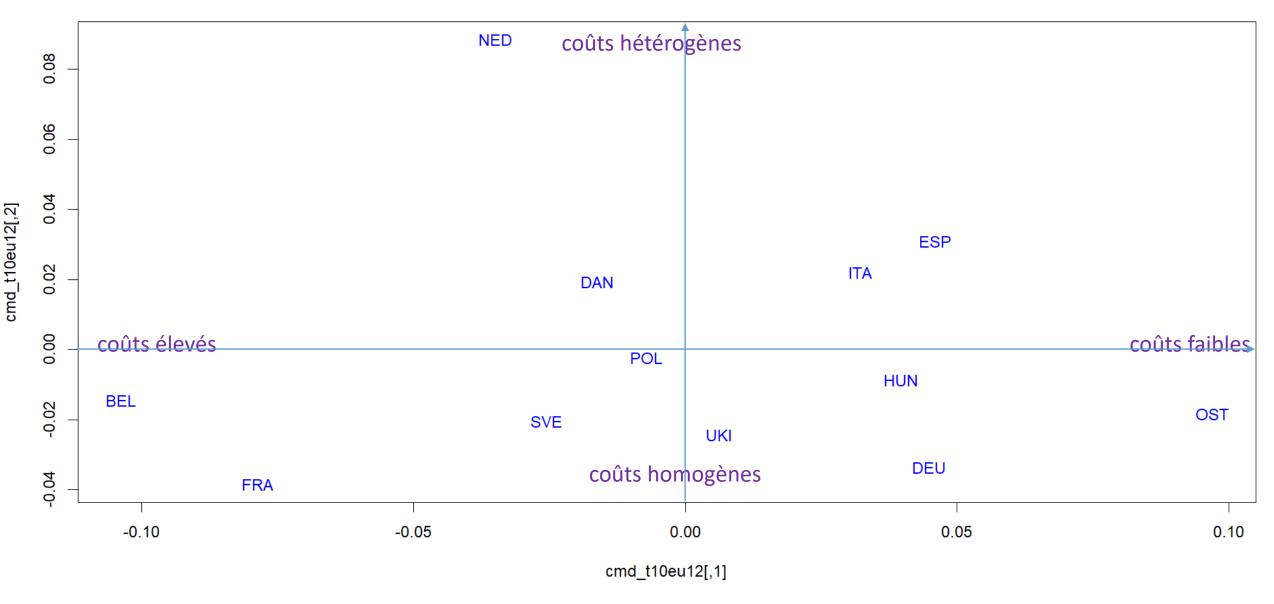
$$Pr(\sup_{x\in\mathbb{R}}|G_n(x)-G(x)|>\varepsilon)\leq Ce^{-2n\varepsilon^2}, \forall \varepsilon$$

- Confirmant la conjecture de **Birnbaum et McCarty** (1958), **Massart** (1990) a prouvé cette inégalité pour la constante C=2.
- Contrairement aux tests ne requérant que des données ponctuelles, le test de Wasserstein tire parti des hypothèses distributionnelles sur les intervalles interquantiles (e.g. distribution uniforme).

3- Résultats : AFTD, CAH, Test 2-W, DivClust

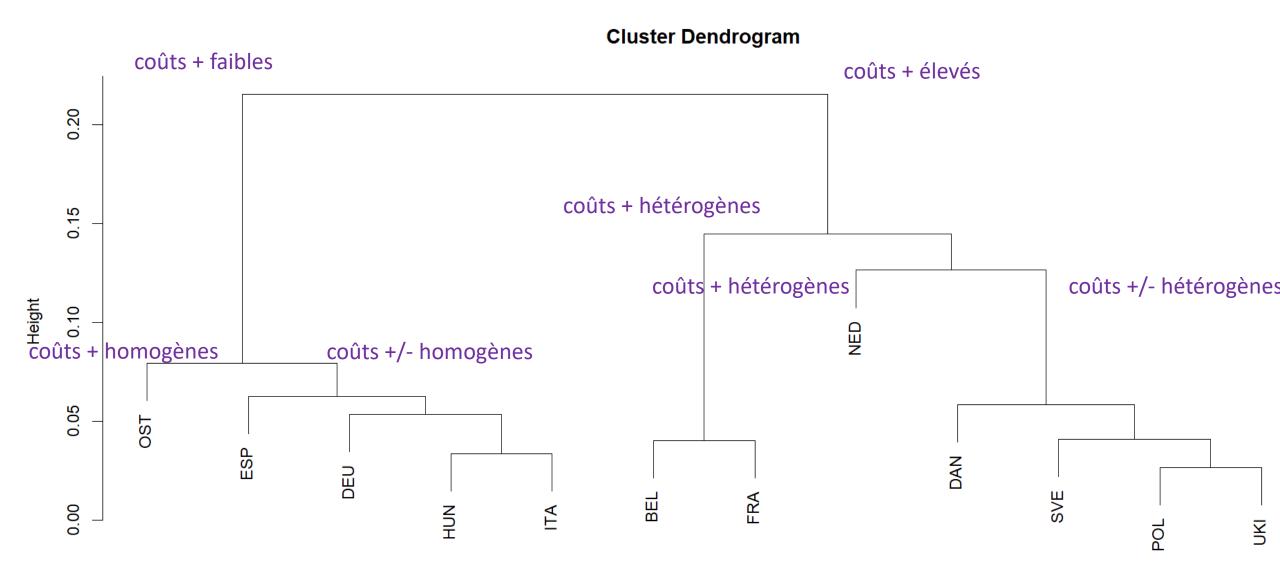
AFTD (c1..c9), 12 pays européens, coûts en intrants du blé tendre

Analyse factorielle du tableau de distances de Wasserstein

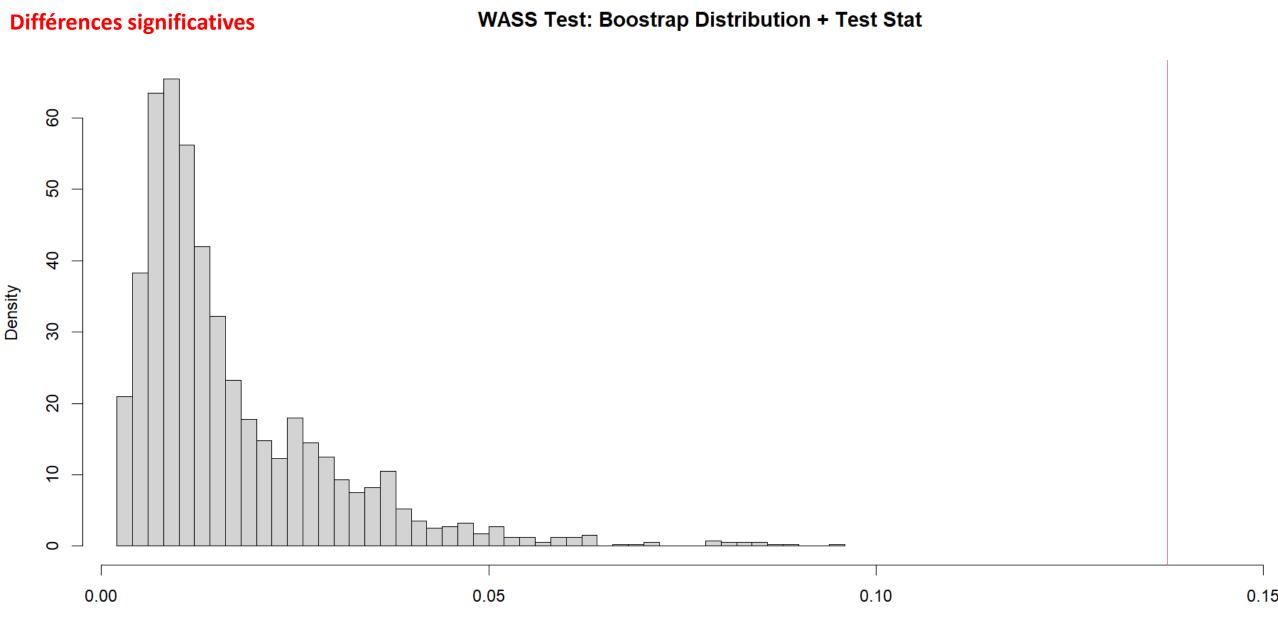


> cmd_c10eu12<-cmdscale(c10eu12)

CAH 12 pays européens (c1..c9), distance quadratique de Wasserstein (W_2)



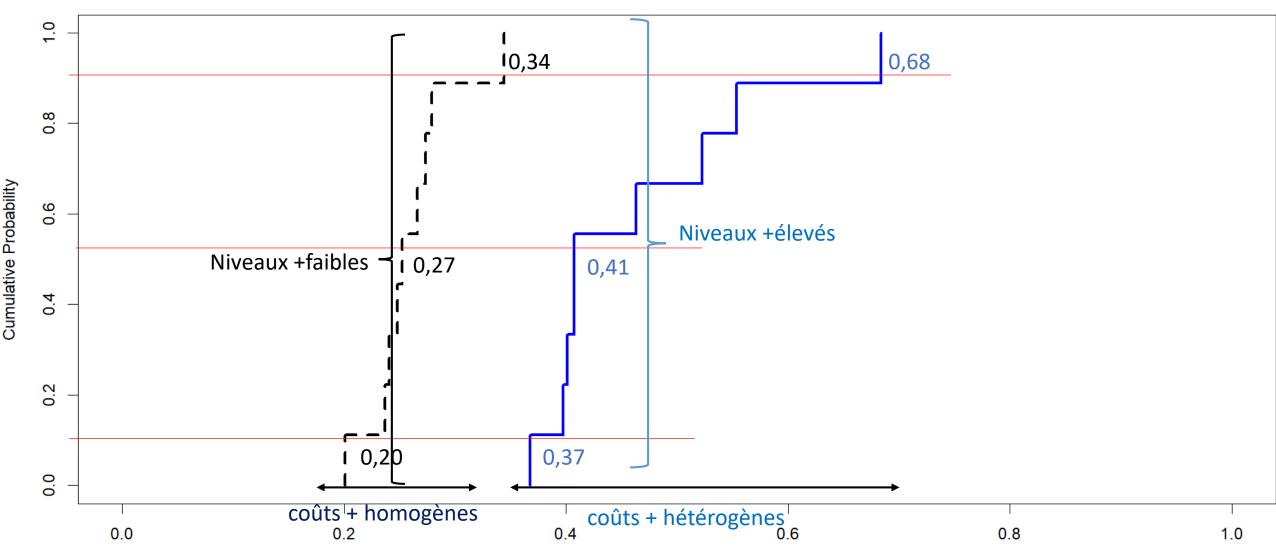
12 pays européens (c1..c9) test de Wasserstein : BEL vs OST



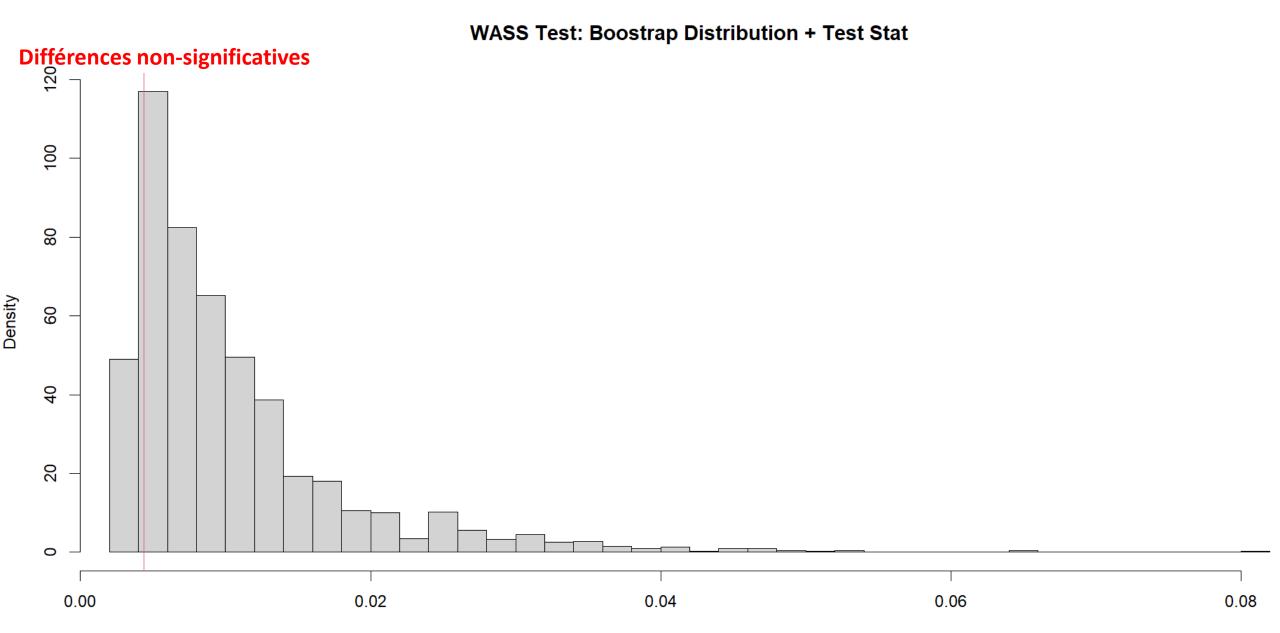
Boostrapped Test Stat Values, Test stat at red line p-val = 0.00025 | Test stat =~0.138

12 pays européens (c1..c9), FdR empiriques: BEL vs OST

- BEL<-as.numeric(c10eu12[1,2:10])
 OST <-as.numeric(c10eu12[9,2:10])
 cdfCompare(x=BEL,y=OST,xlim=c(0,1),ylim=c(0,1), discrete=TRUE)
- Empirical CDF for BEL (solid line) with Empirical CDF for OST (dashed line)

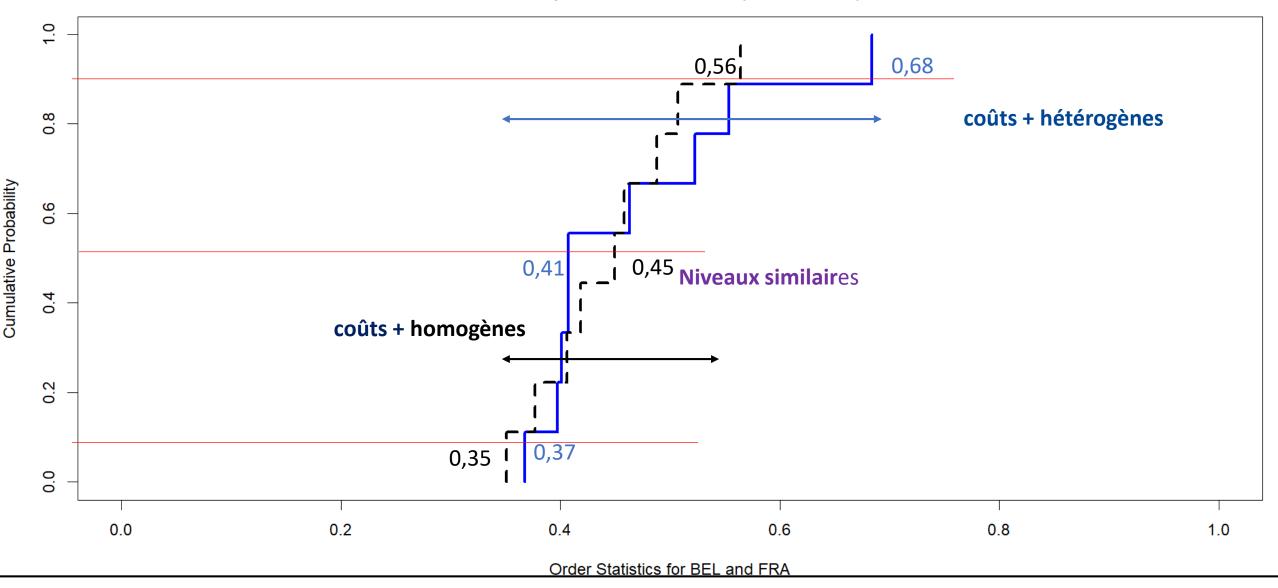


12 pays européens (c1..c9), test de Wasserstein : BEL vs FRA



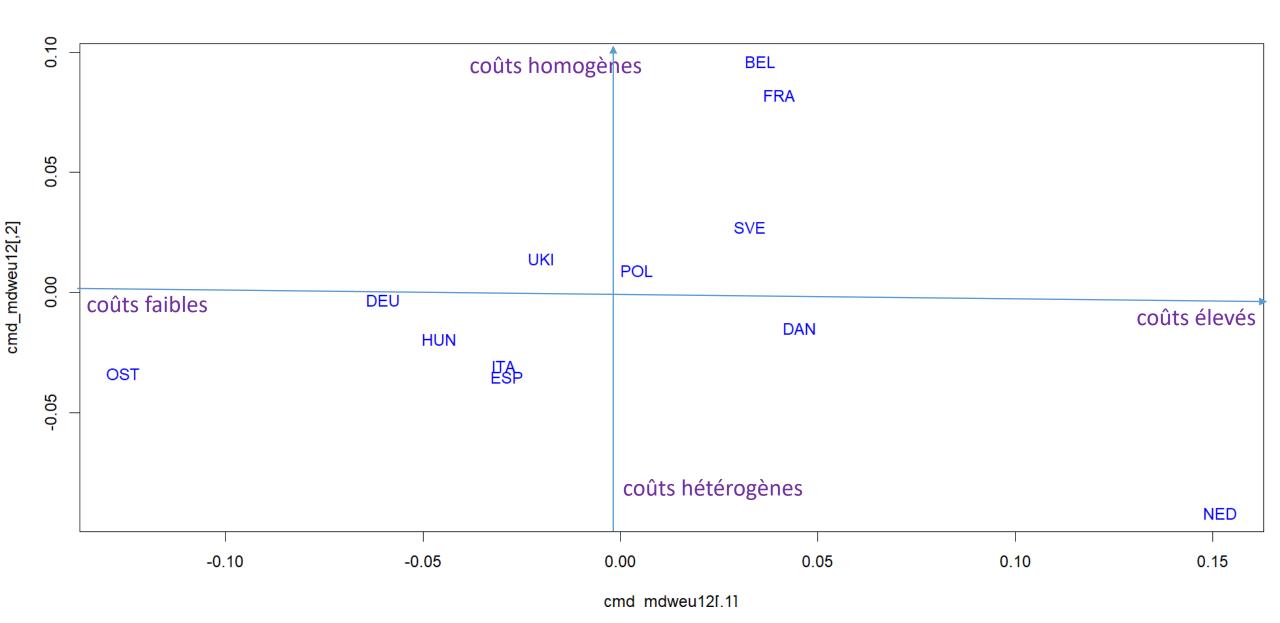
12 pays européens (c1..c9), FdR empiriques: BEL vs FRA

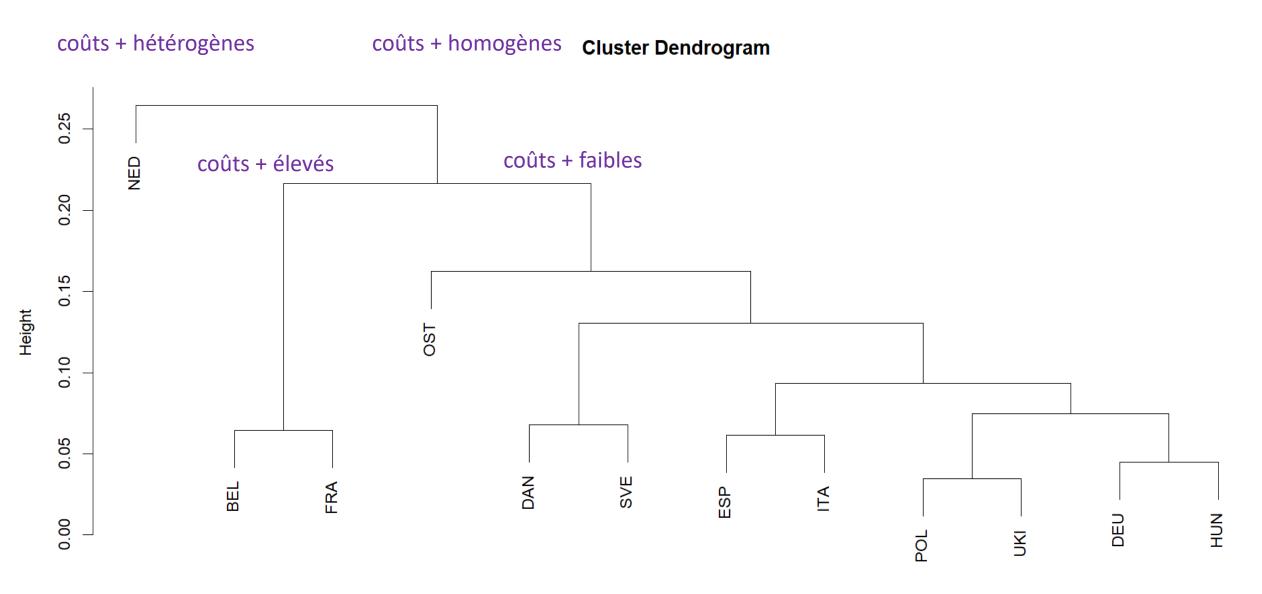
Empirical CDF for BEL (solid line) with Empirical CDF for FRA (dashed line)



AFTD 12 pays européens (W_2 -distance de Wasserstein : c01..c99), intrants blé

Analyse factorielle du tableau de distances de Wasserstein

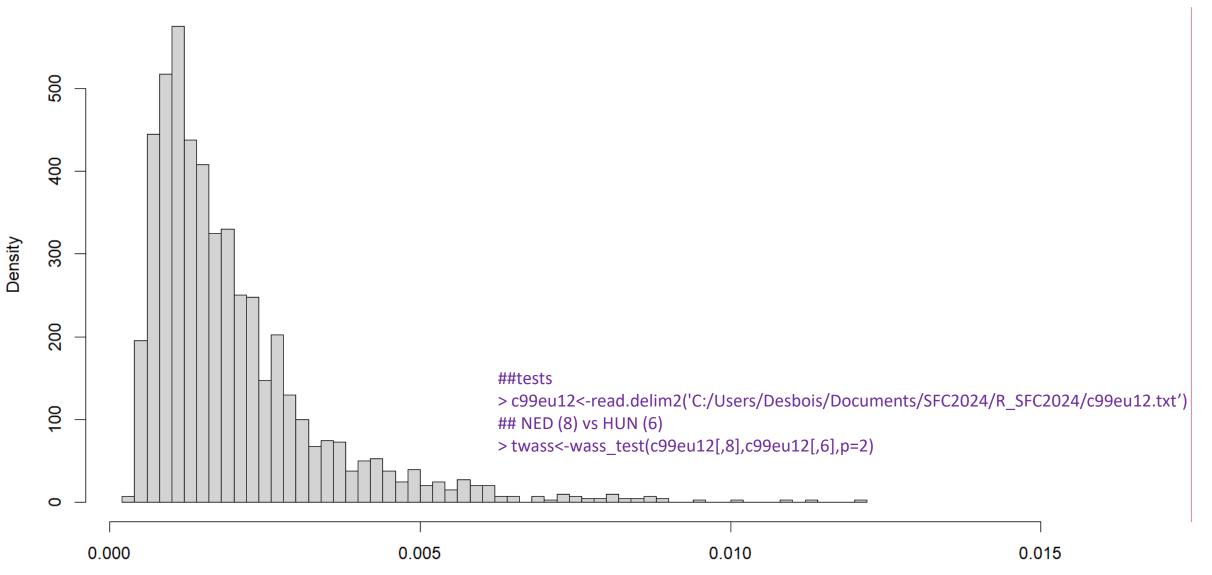




ddweu12 hclust (*, "ward.D2")

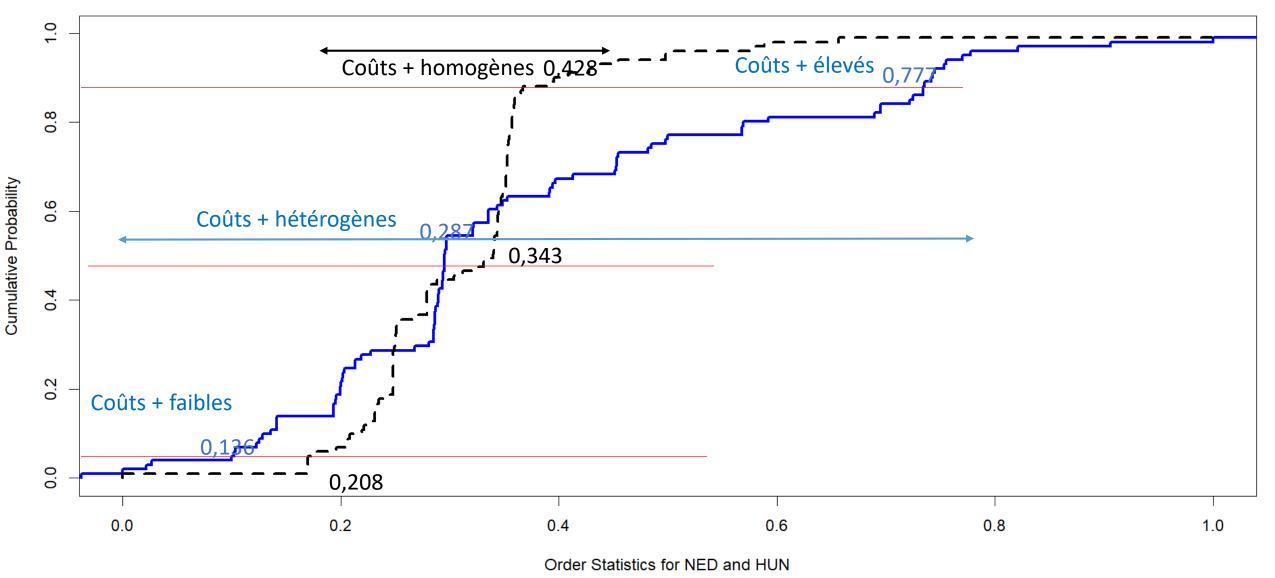
WASS Test: Boostrap Distribution + Test Stat

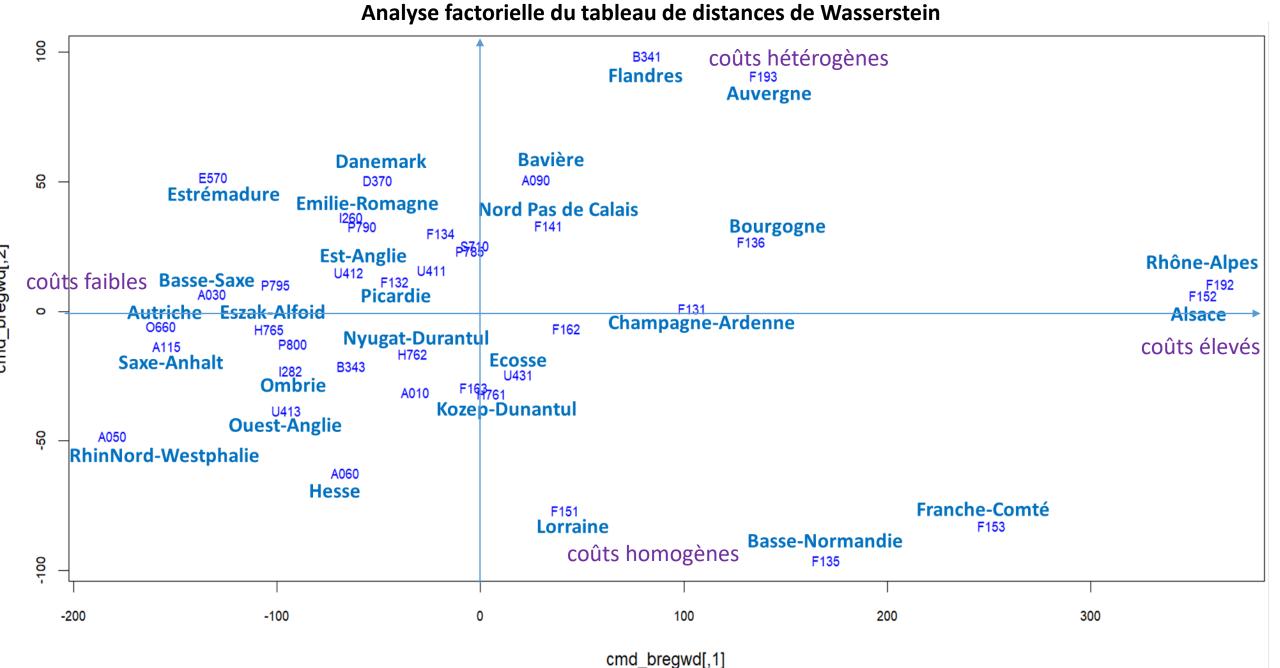
Différences significatives

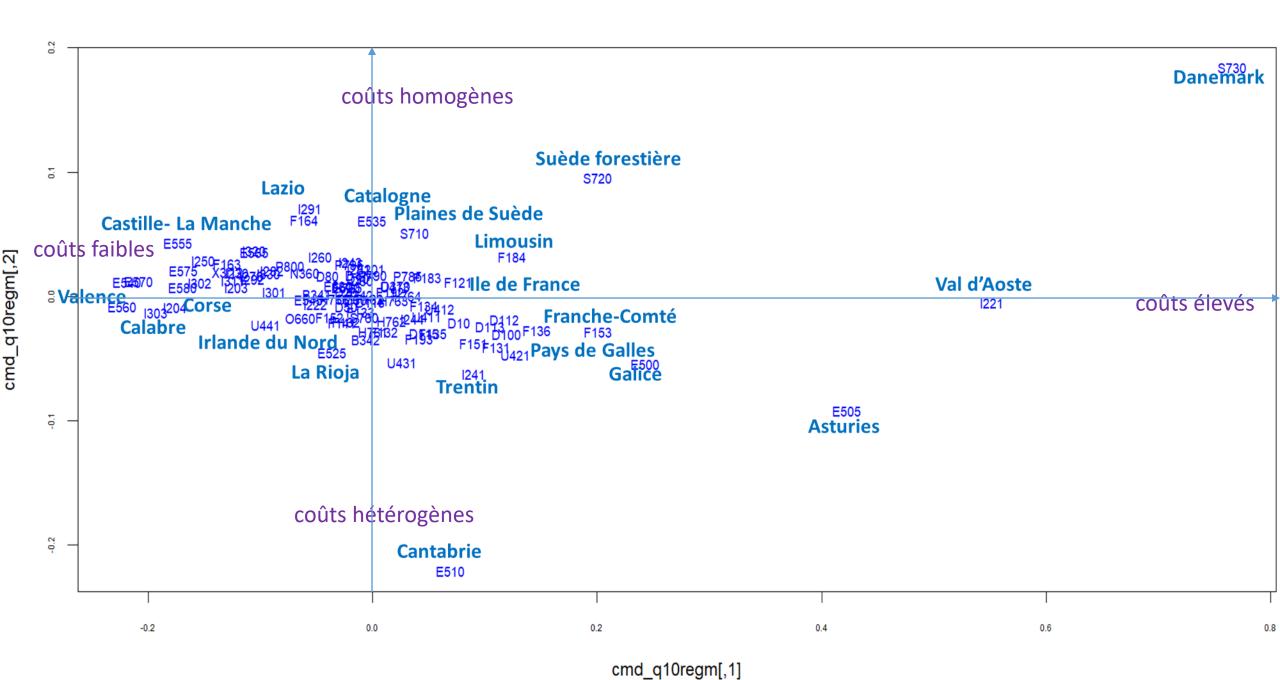


Boostrapped Test Stat Values, Test stat at red line p-val = 0.00025 | Test stat =~0.0174

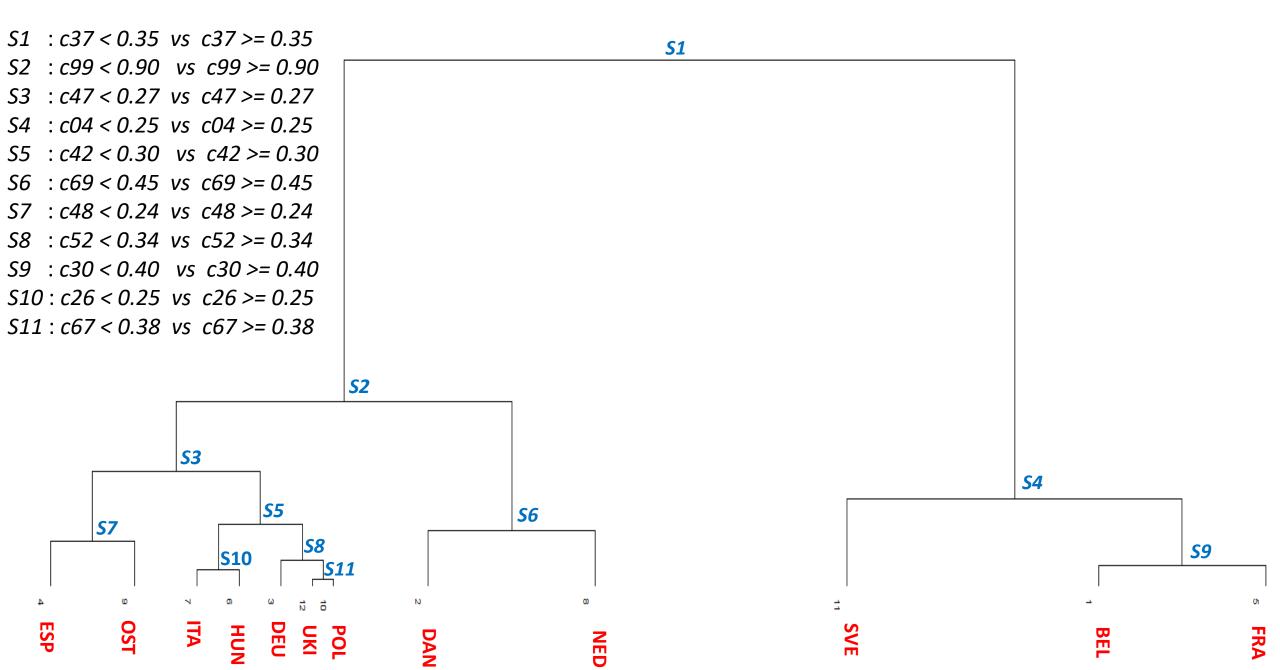
Empirical CDF for NED (solid line) with Empirical CDF for HUN (dashed line)





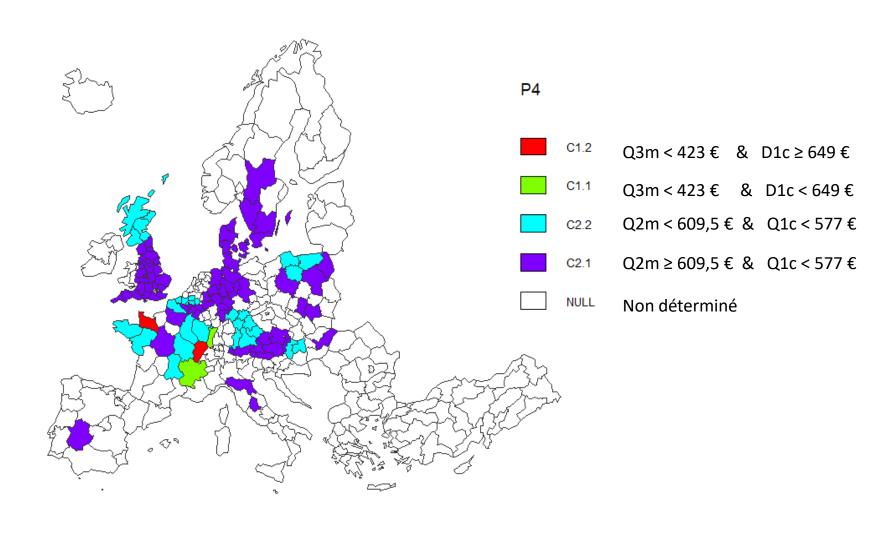


plot(res_divclust, nqbin=11, cex=0.4)



Perspectives

Vers une partition des coûts spécifiques et des marges brutes pour les exploitations agricoles en Europe



- ☐ Une méthodologie d'estimation quantile des coûts spécifiques
 - ✓ Basée sur un modèle général comptable d'allocation des intrants aux extrants
 - ✓ Adaptée à la nature duale des concepts comptables de coûts spécifiques et de marges brutes
 - ✓ Adaptée à la nature asymétrique des distributions de charges et de revenus
 - Réalisable au niveau II de la NUTS (régions européennes)
- ☐ Des outils exploratoires et décisionnels pour étudier les distributions quantiles empiriques
 - ✓ L'analyse factorielle du tableau des distances de Wasserstein (AFTDW)
 - ✓ La classification ascendante hiérarchique sur distances de Wasserstein (CAHDW)
 - ✓ Le test quadratique de Wasserstein (T2W) d'égalité de distributions empiriques
 - ✓ Une extension à la classification divisive (DivClustW)
- ☐ L'élaboration d'un référentiel typologique de coûts spécifiques
 - Un référentiel typologique de coûts spécifiques au niveau régional européen

Références

- Birnbaum, W. R. & McCarty Z. C. (1958) A Distribution-Free Upper Confidence Bound for Pr{Y<X}, Based on Independent Samples of X and Y, *Ann. Math. Statist.* 29(2): 558-562 (juin). DOI: 10.1214/aoms/1177706631
- Chavent, M.; Lechevallier, Y.; Briant O. (2007) DIVCLUS-T: A monothetic divisive hierarchical clustering method. *Computational Statistics and Data Analysis* 52: 687-701.
- Clement, P.; Desch W. (2008) An Elementary Proof of the Triangle Inequality for the Wasserstein Metric, *Proceedings of the American Mathematical Society*, Volume 136, n°1, janvier 2008, pp. 333–339
- Desbois D., Butault J.-P., Surry Y. (2017). Distribution des coûts spécifiques de production dans l'agriculture de l'Union européenne : une approche reposant sur la méthode de régression quantile, *Economie rurale*, n° 361, pp. 3-22.
- Dvoretzky, A.; Kiefer, J.; Wolfowitz, J. (1956), "Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator", *Annals of Mathematical Statistics*, 27 (3): 642–669.
- Gabriel, K. R. (1971). The biplot graphical display of matrices with application to principal component analysis. *Biometrika*, **58**, 453--467. 10.2307/2334381.
- Gower, J.C.; Hand D. J. (1996). *Biplots*. Chapman & Hall.
- Irpino A. & Romano E. (2007) Optimal histogram representation of large data sets: Fisher vs piecewise linear approximation, EGC, vol. RNTI-E-9, pp. 99-110
- Massart, P. (1990), "The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality", Annals of Probability, 18 (3): 1269–1283.
- Irpino, A., & Verde, R. (2006). A new Wasserstein based distance for the hierarchical clustering of histogram symbolic data.
 In: V. Batanjeli, H. H. Bock, A. Ferligoj, & A. Ziberna, (Eds.), Data science and classification, IFCS 2006 (pp. 185–192). Berlin: Springer.